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Abstract

Several experimental and epidemiological evidence indicate that, irrespective of the trigger for the developmen
(chronic infection/inflammation or genetic alteration), a ‘‘smouldering’’ inflammation is associated with the most of, i
not all, tumours and supports their progression.

Several evidence have highlighted that tumours promote a constant influx of myelomonocytic cells that expres
inflammatory mediators supporting pro-tumoral functions. Myelomonocytic cells are key orchestrators of cancer
related inflammation associated with proliferation and survival of malignant cells, subversion of adaptive immun
response, angiogenesis, stroma remodelling and metastasis formation.

Although the connection between inflammation and cancer is unequivocal the mechanistic basis of such association
are largely unknown. Recent advances in the understanding of the cellular and molecular pathways involved in cancer
related inflammation as well as their potential relevance as diagnostic, prognostic and therapeutic targets are herein
discussed.
r 2009 Elsevier GmbH. All rights reserved.
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Introduction

Although the progress achieved by new diagnosti
and therapeutic treatments has led to a declined
mortality rate, cancers remain one of the major caus
of death in industrialized countries. The progressiv
sequence of mutations and epigenetic alterations o
cancer-related genes promote the malignant transforma
tion of cancer progenitor cells by disrupting ke
processes that are involved in the control of normal cel
growth and tissue homeostasis. In addiction to geneti
alterations, inflammatory cells and circuits characteriz
the tumour microenvironment and represent crucia
players in the tumour development and progression
(Balkwill et al. 2005; Balkwill and Mantovani 2001
Coussens and Werb 2002; Karin 2006).

The inflammation–cancer link can be view a
consisting of two pathways: an extrinsic pathway driven
by inflammatory signals (e.g. infections) and autoimmun
diseases (e.g. inflammatory bowel disease) and an
intrinsic pathway driven by genetic alterations tha
cause both inflammation and neoplasia (Mantovan
et al. 2008). Thus, irrespective of the trigger for th
development, the presence of inflammatory cells and
mediators in tumour tissues, tissue remodelling and
angiogenesis similar to that seen in chronic inflamma
tory responses and tissue repair are hallmarks of mos
of, if not all tumours. Several studies have highlighted
that a leukocytes infiltrate, varying in size, composition
and distribution is present in the majority of tumour
and is involved in carcinogenesis, tumour growth
invasion and metastasis (Coussens et al. 2000; Lin
et al. 2001; Mantovani et al. 1992). In particular tumou
growth is paralleled by recruitment and accumulation o
myelomonocytic cells; macrophages in particular (Sic
and Bronte 2007).

Altough these cells have the ability to prevent th
establishment and the spread of tumour cells, severa
evidence indicate that, in established cancers, these cell
acquire functions supporting tumour growth and
dissemination (Mantovani et al. 2004 2002; Sica et al
2006). Their phenotypic switch during tumour develop
ment may depend on the functional plasticity character
izing these cells. Indeed, in response to differen
microenvironmental signals macrophages can expres
different ‘‘polarized’’ functional programs (Mantovan
et al. 2005). However, up to date, the tumour-derived
signals promoting the skewing of myeloid cell function
are poorly known.

In this review we discuss current knowledge about th
cellular and molecular basis promoting cancer-related
inflammation. The elucidation of these mechanisms may
offer the opportunity to develop strategies and drug
that could act in synergism with conventional therapeu
tics and further overcome the problems due to the high
grade of genetic instability of characterized malignan
cells.
Inflammation and cancer connection

Chronic inflammation represents a major pathologi
cal basis for tumour development. Although inflamma
tion acts as host defence mechanism against infection o
injury and is primarily a self limiting process, inadequat
resolution of inflammatory responses lead to variou
chronic disorders associated with cancers. In 1863
Rudolf Virchow proposed that chronic inflammation
supports cancerogenesis. Since then, accumulating
studies support this hypothesis and it is estimated tha
20% of all cancers death are associated with chroni
infection and inflammation. Microbial infections (e.g
Helicobacter pylori is associated with gastric cancer and
gastric mucosal lymphoma), viral infections (e.g. hepa
titis B or C virus are associated with hepatocellula
carcinoma), autoimmune disease (e.g. inflammatory
bowel disease is associated with colon cancer) and
inflammatory conditions of unknown origin (e.g
prostatitis is associated with prostate cancer) ar
recognized as triggers of chronic inflammation asso
ciated with cancer development (Mantovani et al. 2008)
In line with the pro-tumoral role of chronic inflamma
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Fig. 1. Inflammation and cancer connection. Irrespective of

the trigger for the development both intrinsic (driven by

genetic alteration) and extrinsic (driven by inflammatory cells

and mediators) pathways result in inflammation and neoplasia.

Both neoplastic cells and leukocytes, mainly belonging to the

myelomonocytes lineage, contribute to the ‘‘smouldering’’

inflammation associated with tumour initiation and progres-

sion. The transcription factors NF-kB, HIF-1a and STAT-3

are key modulators of the inflammatory response that

promotes cancer development through different mechanisms

including induction of genomic instability, alteration in

epigenetic events and subsequent inappropriate gene expres-

sion, enhanced proliferation and resistance to apoptosis of

initiated cells, induction of tumour angiogenesis and tissue

remodelling with consequent promotion of tumour cells

invasion and metastasis. (Mø, macrophages; Mc, mast cells;

MDSC, myeloid derived suppressor cells; Eo, eosinophil;

PMN, polymorphonuclear cells).

C. Porta et al. / Immunobiology 214 (2009) 761–777 763
tion, epidemiological studies have highlighted that th
treatment with nonsteroidal anti-inflammatory agents
such as cycloxygenase-2 (COX-2) inhibitors, reduce th
risk of developing certain cancers (such as colon an
breast cancer) and the mortality caused by these cancer
(Chan et al. 2004, 2007; Flossmann and Rothwell 2007
Koehne and Dubois 2004). In addition a ‘‘smouldering
inflammation is present in tumours not causally relate
to an obvious inflammatory process (intrinsic pathway)
Recent evidence has indeed demonstrated that th
expression of the inflammation-related programs i
driven by the activation of different classes of onco
genes. For example, the chromosome rearrangemen
leading to the ligand independent activation of th
tyrosine kinase RET is a frequent early event in th
pathogenesis of the papillary thyroid carcinoma. Bor
rello and colleagues observed that in freshly isolate
human thyrocytes, activation of the oncogene RET
promotes the same inflammatory transcriptional pro
gram found in patients affected by papillary thyroi
carcinoma (Borrello et al. 2005). In analogy, othe
oncogenes, (e.g. RAS and MYC) and tumour-suppres
sor genes, (e.g. von Hippel-Lindau tumour suppresso
(VHL), transforming growth factor-b ( TGFb) an
phosphatase and tensin homologue (PTEN)), activat
signalling pathways involved in inflammation (Ancril
et al. 2007; Balkwill 2004; Guerra et al. 2007; Kobiela
and Fuchs 2006; Phillips et al. 2005; Schioppa et a
2003; Shchors et al. 2006; Soucek et al. 2007).

Both extrinsic and intrinsic pathways of cancer
related inflammation activate transcription factor
(mainly NF-kB, HIF-1a, STAT3), which are the ke
inducers of inflammatory mediators (e.g. cytokines
chemokines, prostaglandins and nitric oxide) (Manto
vani et al. 2008). The switch to ‘‘smouldering
inflammation contributes to tumour developmen
through different mechanisms, including induction o
genomic instability, alteration in epigenetic events an
subsequent inappropriate gene expression, enhance
proliferation and resistance to apoptosis of initiate
cells, induction of tumour angiogenesis and tissu
remodelling with consequent promotion of tumour cell
invasion and metastasis (Mantovani et al. 2008) (Fig. 1

Despite this evidence, genetic studies of mouse model
have demonstrated that the inflammatory respons
supported by innate immune cells is crucial for th
activation of an adaptive immune response capable t
eliminate nascent tumours (Dunn et al. 2002). It i
generally accepted that immune cells continuousl
recognize and destroy nascent tumour cells but, due t
the genetic instability that characterize neoplastic cells
the arising of new variants able to evade the immun
surveillance results in tumour establishment and pro
gression (‘‘immunoediting’’ process) (Dunn et al. 2002
In this regard several studies aim to elucidate th
mechanisms driving immune escape. They emphasis
that the smouldering inflammation associated with
established tumours tunes the adaptive immune re
sponse. Indeed, tumour-associated dendritic cells mainl
show an immature phenotype (Allavena et al. 2000) an
myelomonocytic cells recruited in tumours express a
alternative M2 functional phenotype, mainly oriente
towards the suppression of the adaptive immun
response (Mantovani et al. 2009; Sica et al. 2006).
Tumour-associated myelomonocytic cells

Tumour-derived factors, which cause sustained mye
lopoiesis, accumulation and functional differentiation o
myelomonocytic cells, provide an essential support fo
the angiogenesis and the stroma remodelling required
for tumour growth (Mantovani et al. 2009; Sica and
Bronte 2007). Whereas tumour-associated macrophage
(TAM) represent the major population of inflammator
cells infiltrating tumours, several studies indicate tha
Tie2-expressing monocytes (TEM) and myeloid-derived
suppressor cells (MDSC) are also involved in th
promotion of tumour growth, dissemination and me
tastasis (Fig. 2).



g

e

e

t
y
e
s
,
e
-
y
-
e
r
e
a
f

s
.

s

,
l
l
.
e

e
-
t
)

;
c
r
c
e
r
-

ARTICLE IN PRESS

Fig. 2. Tumour-derived factors (TDFs) sustain the myelopoiesis as well as the accumulation and functional differentiation of

myelomonocytic cells. HSCs give rise to common myeloid precursors (CMPs), which subsequently originate at least three different

subsets of cells circulating in tumour-bearing hosts: monocytes (CD11b+/Gr1+/F4/80+/CCR2+), TEM (CD11b+/Gr1low/�/Tie2+)

and MDSCs (CD11b+/Gr1+/F4/80low/�/IL-4Ra+/_). Circulating monocytes are recruited by TDFs (mainly CCL2) and

differentiated into TAMs, acquiring pro-tumoural functions. TEMs, mainly clustered in highly vascularised tumours area, are

key orchestrators of tumour angiogenesis; they likely derived by circulating TEMs recruited in tumours by chemotactic factors such

as Ang2. MDSC, accumulating in blood and lymphoid organs during tumour progression, may also be recruited to the tumour

microenvironment (CCL2, S-100), where they contribute to suppression of the adaptive immune response.

C. Porta et al. / Immunobiology 214 (2009) 761–777764
Tumour-associated macrophages

The tumour-promoting role of TAM was suggested
by the association between high frequency of infiltratin
TAM and the poor prognosis for many different human
tumours such as lymphoma, cervix, bladder, breast and
lung cancers (Bingle et al. 2002). Accordingly with thes
findings, in the post-genomic era, genes associated to
leukocytes or macrophages infiltration (e.g. CD68) wer
identified as a part of the molecule signatures, which
herald to a poor prognosis in lymphomas and breas
carcinoma (Paik et al. 2004). In addition, geneticall
modified mice and cell transfer experiments hav
provided direct evidence for the pro-tumour function
of TAMs. For example, when MMTV-PyMT mice
which spontaneous develop mammary tumours, wer
crossed with op/op mice, which lack monocytes/macro
phages, the tumour growth and spread were significantl
reduced (Lin et al. 2001). In line with their tumour
promoting properties, different drugs able to deplet
(Yondelis, clodronate) macrophages or to inhibit thei
recruitment in tumours (anti-CCL2 antibodies) wer
considered as anti-tumour strategy. For example, in
preclinical prostate cancer model, the combination o
anti-CCL2 antibodies enhanced the therapeutics effect
of docetaxel leading to tumour regression (Rozel et al
2009).

Despite this evidence, macrophages can also expres
functional programs able to exert cytotoxic activity on
tumours. This paradoxical behaviour may be explained
by the functional plasticity monocytes/macrophages
which result in the expression of different functiona
programs in response to different microenvironmenta
signals (Gordon and Taylor 2005; Mantovani et al
2002). In analogy with the Th1 and Th2 dichotomy th
macrophage-polarized state of activation can be broadly
classified as M1 or M2. Classical or M1 macrophag
activation in response to microbial products or inter
feron-g is characterized by: high capacity to presen
antigen; high interleukin-12 (IL-12) and -23 (IL-23
production and consequent activation of a polarized
type I T cell response (Gordon and Taylor 2005
Mantovani et al. 2002). M1 macrophages have cytotoxi
activity towards tumour cells and ingested intracellula
microorganisms, by expressing high levels of toxi
intermediates, including nitric oxyde (NO), reactiv
oxygen intermediates (ROI) and tumour necrosis facto
alpha (TNFalpha) (Gordon and Taylor 2005; Manto
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vani et al. 2002). In contrast, alternative or M
activation of macrophages is promoted by variou
signals (e.g. IL-4, IL-13, glucocorticoids, IL-10, immu
noglobulin complexes/TLR ligands), which elicit differ
ent M2 forms, sharing a phenotype characterized by a
IL-12low IL-10high IL-1 decoyRhigh, IL-1rahigh expressio
along with high expression of scavenger and mannos
receptors (Gordon and Taylor 2005; Mantovani et a
2002). Furthermore M2 macrophages express a distinc
chemokines expression pattern (e.g. CCL17, CCL22
and characteristic change in some metabolic pathway
(e.g. arginine methabolism is oriented towards th
production of ornitine and polyamine instead of citrul
line and NO). Overall the various forms of M2 activate
macrophages are oriented to tune M1 inflammation
promoting adaptive Th2 immunity, scavenge debris
angiogenesis, tissue remodelling and repair. Thus, M2
polarized macrophages promote killing and encapsula
tion of parasites, support wound-healing and expres
tumour-promoting functions. Which signals driv
TAM-polarized activation are not fully elucidated, bu
several evidence indicate that the cross-talk betwee
tumour cells and macrophages is an essential event. New
evidences indicate that macrophage activation switch
during the course of tumour progression (Fig. 3)
Whereas the functions of classically activated, ‘M1
macrophages, during chronic inflammation appear t
Fig. 3. Macrophages activation switch during the course of tum

initiation and activate an adaptive immune response capable to

progression (equilibrium phase) is paralleled by a gradual switchin

concur to the establishment of permissive conditions for tumour g

kB activity is associated with the M1 versus M2 switching of mac
predispose a given tissue to tumour initiation (Greten
et al. 2004; Pikarsky et al. 2004), in established tumours
macrophages exhibit mainly the alternatively activated
‘M2’ phenotype and are engaged in immunosuppression
and promotion of tumour angiogenesis and metastasi
(Mantovani et al. 2004; Sica et al. 2006).

Accordingly with an M2 skewed phenotype, in
established tumours, TAM express low levels o
inflammatory cytokines (e.g. IL-12, IL-1b, TNFa
IL-6) (Biswas et al. 2006; Mantovani et al. 2004) a
well as NO (Dinapoli et al. 1996; Klimp et al. 2001) and
ROIs, along with high levels of immunosuppressiv
cytokines (e.g. IL-10, TGFb) and scavenger receptor
(e.g. SR-A and mannose receptor) (Biswas et al. 2006
Scarpino et al. 2000). This M2 signature along with poo
antigen-presenting capacity account for TAM immuno
suppressive activities.

The importance of selective polarized inflammator
functions for tumour progression is also supported b
evidence suggesting that the type of immunologica
profile expressed at the tumour site represents an
independent prognostic factor. In particular, an estab
lished M2 or type-2 ‘‘suppressive’’ immunologica
profile correlates with poor prognosis, as shown in both
colorectal and hepatocellular carcinomas (Budhu et a
2006; Galon et al. 2006). In this scenario, understandin
of tumour-mediated mechanisms promoting polariza
our progression. Whereas M1 macrophages promote tumour

eliminate nascent neoplastic cells (elimination phase), tumour

g of macrophage polarization towards the M2 phenotype, which

rowth and spread (escape phase). The gradual inhibition of NF-

rophages polarization.
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tion of immune functions is likely to reveal new element
suitable for anticancer strategies.

Approaches based on Toll-like receptor (TLR
agonists, inducers of classical or M1 activation o
macrophages, were evaluated for their anti-tumou
potential. For example, the combination of the TLR
agonist CpG plus an anti-IL-10 receptor antibod
switched infiltrating macrophages from M2 to M
functions and triggered innate immune response debulk
ing large tumours within 16 h (Guiducci et al. 2005). In
line with this study, several other studies in preclinica
models of cancers have confirmed the anti-tumou
properties of TLR9 agonists, which are currently used
to treat solid and haematologic malignancies (Krie
2008).
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Tie2-expressing monocytes

The generation of new blood vessels in response to th
increasing demand for nutrients and oxygen experienced
by proliferating tumour cells is essential for tumou
growth and progression (Carmeliet and Jain 2000)
Myelomonocytic cells, TAM in particular, play a ke
role in promoting tumour angiogenesis by secretion o
several growth and matrix remodelling factors such a
vascular endothelial growth factor (VEGF), basi
fibroblast growth factor (bFGF), platelet-derived
growth factor (PDGF), urokinase type plasminogen
activator (uPA), metalloproteinase (MMPs), which
directly activate endothelial cells proliferation and
facilitate their migration within the extracellular matri
(Coussens and Werb 2002; Pollard 2004). Recently, new
evidence has highlighted that a distinct subset o
monocytes (TEM) characterized by the expression
of the Tie-2 receptor, play a key role in the promotion
of tumour angiogenesis (De Palma et al. 2005; De Palm
et al. 2003; Venneri et al. 2007). In particular De Palm
et al. (2005) have generated a transgenic mice tha
express the conditionally toxic gene herpes symple
virus thymidine kinase (tk) under the control of Tie
promoter/enhancer. Chimeric mice obtained by trans
planting Tie2-tk bone marrow in wild-type recipien
mice were inoculated with either mammary tumours o
orthotopic human gliomas. Next Ganciclovir wa
administrated during the early stages of tumour growth
to selectively eliminate TEMs. This study showed
significant reduction of both tumour mass and vascu
lature, demonstrating the importance of TEMs in
tumour angiogenesis and growth (De Palma et al
2005). In both mouse and human, TEMs can b
detected at low frequency in peripheral blood (wher
they represent about the 20% of circulating monocytes
(Murdoch et al. 2007; Venneri et al. 2007). TEMs ar
clustered in hypoxic areas of solid tumours, in clos
proximity to nascent tumour vessel. TEMs migrate in
response to Angiopoietin-2 (Ang-2) that is upregulated
in hypoxic vascular cells of tumours (Murdoch et al
2007; Venneri et al. 2007). Furthermore Ang-2 along
with tumour microenviromental signals such as hypoxia
promotes the angiogenic activity of TEMs. Recen
studies have demonstrated that both hypoxia and
Ang-2 inhibit TEMs expression of IL-12 and TNFalpha
gene products (Murdoch et al. 2007). The tumour
homing ability of TEMs may potentially be used as a
vehicle for anti-tumour gene delivery. Recently, thi
approach was used to deliver IFNalpha to orthotopi
human gliomas and spontaneous mouse mammary
carcinoma. This approach resulted in significant anti
tumour response and near complet abrogation o
metastasis (De Palma et al. 2008).
Myeloid-derived suppressor cells

MDSC were first described in the late 1970s as cells o
non-lymphocytic lineage able to suppress T cell
functions (Badger et al. 1990; Holda et al. 1985; Strobe
1984) and only more recently there has been a
resurgence of interest in these cells because of their rol
in tumour progression and their potential to limi
therapeutic responses (Marx 2008).

MDSC have been described both in humans and mice
In human, they were first identified in cancer patient
(Apolloni et al. 2000; Kusmartsev and Gabrilovich 2005
Zea et al. 2005) as cells with an immature phenotyp
expressing CD13, CD33, CD34 and CD11b and being
negative for CD14 and HLA-DR. In mice, these cells ar
usually identified as CD11b and Gr-1 (LY6c and LY6 g
double-positive cells and they can also express CD115
M-CSFR, CD31, CD124 and IL-4Ra (Gallina et al
2006). It has been shown that LY6c+ and LY6g+
populations might have different functions in cance
(Dietlin et al. 2007; Movahedi et al. 2008; Sawanobori e
al. 2008; Zhu et al. 2007).

MDSC derive from common progenitors in the bon
marrow and are mobilized in many pathologica
conditions such as inflammatory diseases, trauma
graft-versus-host disease and tumours, where they
accumulate preferentially in blood and spleen with som
being recruited directly to the tumour site.

MDSC recruitment and expansion are regulated by
several cytokines, chemokines and transcription
factors and mechanisms leading to MDSC activation
are very complex (Sica and Bronte 2007). It has been
demonstrated that among the different chemokines
CCR2 plays a pivotal role in the recruitment and
turnover of MDSC in the tumour site (Sawanobori et al
2008).

In this review, we focused on cancer-related inflam
mation, which is linked to tumour progression; it is very
important to notice that some factors that are found in
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the tumour microenvironment such as pro-inflamma
tory S-100 proteins are crucial for MDSC recruitment
Sinha et al. (2008) demonstrated that MDSC ca
produce S-100 proteins by themselves, thus providin
evidence for an autocrine loop that promotes MDSC
recruitment at the site of inflammation (tumour site) i
S-100 dependent manner (Cheng et al. 2008).

Bronte et al. (1999) have shown that tumour-derive
granulocyte-macrophage colony-stimulating facto
(GM-CSF) or the administration of recombinant GM
CSF is sufficient to recruit MDSC in lymphoid organ
and suppresses antigen specific CD8 proliferation.

Other factors such as colony-stimulating factor-
(CSF-1), IL-6, IL-10 and VEGF can regulate MDSC
behaviour. CSF-1 recruits suppressive macrophages t
the tumour site and macrophages exposed to CSF-1 ca
induce T cell inhibition through the deprivation o
factors such as tryptophan, which are important for T
cell proliferation (Wing et al. 1986; Mellor et al. 2003
Mellor and Munn 2003; Mellor and Munn 2004).

Also high levels of IL-6 are associated with poo
prognosis in some cancers. IL-6 induces STAT-3, whic
is a negative regulator of immune functions durin
tumour development (Trikha et al. 2003; Greten et a
2004; Stewart and Trinchieri 2009).

VEGF has been directly associated with MDSC
recruitment (Melani et al. 2003), and appears a
important mediators of the cross-talk between tumou
cells and microenvironment, including MDSC (Gabri
lovich 2004).

Finally, IL-10 plays a fundamental role in regulatin
MDSC functions; IL-10 together with TGF-b ar
considered the key factors released by the tumour (Che
et al. 2001).

It has been shown that IL-10 provides an importan
signal to induce the suppressive phenotype of MDSC
(Gallina et al. 2006). Moreover IL-10 can also b
released by MDSC, which can promote the expansion o
CD4+FoxP3+ T regulatory cells and provide a signa
for macrophages M2 polarization (Huang et al. 2006
Sinha et al. 2007).

The L-arginine pathway is fundamental for MDSC
functions. There is a complex and strong relationshi
between L-arginine (L-Arg) metabolism, immunity an
tumourigenesis (Rodriguez and Ochoa 2006), which ha
been extensively reviewed in other works (Bronte an
Zanovello 2005).

Briefly, the two most important enzymes that regulat
L-Arg metabolism are arginase (ARG) and nitric oxid
(NOS). Arginase is present in two different forms; on
inducible and cytoplasmatic (ARG1 or liver arginase
and the other constitutive and mitochondrial (ARG2 o
kidney arginase). ARG1 and 2 convert L-Arg in L

ornithine and urea, which are essential for the genera
tion of polyamines, mediated tumour progressio
(Cederbaum et al. 2004). The presence of MDSC
ARG1+ is related to impaired anti-tumour CTL
functions (Liu et al. 2003).

The inducible form of NOS (iNOS/NOS2) metabo
lizes L-Arg in NO and L-citrulline leading to th
subsequent production of superoxide as well and can
be induced in MDSC by different stimuli such as VEGF
GM-CSF and IL-6 (Bingle et al. 2002; Cruz et al. 2001
Ferret-Bernard et al. 2004; Dawn et al. 2004). The rol
of NOS2 is dual: on one hand it confers protection
towards infections and is expressed by macrophages wit
M1 phenotype, on the other hand it inhibits T ce
activation through the IL-2 receptor pathway (Duhe et a
1998; Fischer et al. 2001; Bronte et al. 2003). Moreover
MDSC expressing iNOS can inhibit mitogenic and
peptide-specific responses through NO production.

Although NOS2 and ARG1 respond to antithetica
stimuli and they are mutually exclusive, they can b
expressed contemporarily in MDSC (Gallina et al. 2006
leading to at least one mechanism of suppression tha
involves both of them (Bronte et al. 2003). In fact
ARG1 increases the levels of superoxide production i
MDSC through a pathway that involves iNOS and thi
superoxide is required for ARG1 mediated suppression
of T cell functions and leads to both T cell and IL-
receptor disfunction (Bronte et al. 2003).

Finally, MDSC can mediate immune suppression also
through ROS. ROS, as iNOS, can be induced b
tumour-derived factors such as TGF-b , IL-6, GM
CSF and IL-10. It has been shown that inhibition o
ROS can abrogate the suppressive functions of MDSC
in vitro (Kusmartsev et al. 2004).

Since MDSC exert very potent immune suppression
various groups have recently attempted to overcom
these mechanisms through different strategies, includin
in vivo depletion of MDSC, pharmacological inhibition
of suppressive functions and induction of fully matur
dendritic cells.

It has been shown that accumulation of MDSC i
sufficient to confer refractoriness to anti-VEGF treat
ment in some tumours. Shojaei et al. (2007) show tha
the combination of anti-VEGF antibody with a mono
clonal antibody that targets myeloid cells is able t
inhibit the growth of refractory tumours more effec
tively than anti-VEGF alone.

Moreover, antibodies against S100-A8 and S-100-A
proteins are able to inhibit MDSC recruitment to th
tumour site (Sinha et al. 2008; Cheng et al. 2008)
Finally, Suzuki et al. (2005) used the chemotherapy dru
Gemcitabine to eliminate Gr-1 CD11b cells from th
spleen of tumour-bearing animals showing that the los
of MDSC was accompanied by an increase in anti
tumour activity of CD8T cells and NK cells.

Nevertheless, despite advances in phenotypic char
acterization of MDSC, much remains to be investigated
for example, the molecular basis underlying the pro
tumoural phenotype of these cells.
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Molecular links between inflammation and

cancer

Studies of genetically modified mice, experiment o
inflammatory cells adoptive transfer and analysis o
human tumours have highlighted some of the molecula
pathways that link inflammation and cancers. Cyto
kines, chemokines, lipid mediators, nitric oxide (NO
intermediates and the transcription factors NF-kB
hypoxia inducible factor 1a (HIF-1a) and signa
transducers and activator of transcription-3 (STAT-3
represent the major molecular players linking inflamma
tion and cancers (Kundu and Surh 2008; Mantovani e
al. 2008). Experimental evidence supporting the im
portance of these molecules in cancer-related inflamma
tion along with preclinical and early phase I/II clinica
trials with drugs are hereafter discussed.
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Cytokines

TNFalpha plays a dual role in carcinogenesis
Whereas high concentration of this cytokine is able to
kill endothelial as well as tumour cells, in certain tumou
models, it stimulates fibroblasts or tumour cell growth
(Gaiotti et al. 2000). Direct evidence of the pro
tumoural role of TNFalpha came from the observation
that mice lacking this cytokine (Moore et al. 1999) or it
receptor (Arnott et al. 2004) are resistant to skin
carcinogenesis. Higher expression of TNFalpha wa
further observed in gastric lesion (Noach et al. 1994) and
inflamed colonic mucosa (Noguchi et al. 1998) obtained
from patients with H. pylori infection and inflammator
bowel diseases, which are predisposing conditions fo
the development of gastric and colorectal tumour
respectively. Furthermost recent evidence suggest tha
TNFalpha is also involved in tumour spread. In vitro co
culture experiments have indeed demonstrated tha
macrophages promote invasiveness of tumour cells b
a TNFalpha dependent matrix metalloproteinase induc
tion (Pollard 2004).

Similarly to TNFalpha, IL-1beta role in cance
associated inflammation is controversial. Whereas
low concentration of IL-1beta may induce a loca
inflammatory response leading to activation of protec
tive immune response, high concentration of IL-1bet
results in inflammation-associated cancer damage (Apt
and Voronov 2002). The importance of IL-1beta in
tumour spread was demonstrated by the observation
that metastasis associated with melanoma, mammar
and prostate cancer models were inhibited in IL-1bet
deficient mice (Giavazzi et al. 1990).

Several lines of evidence indicate that IL-6 is part o
the inflammatory pathways promoting cancer initiation
and progression. The observation of increased IL-
levels in the serum of cancer patients (Chung and Chan
2003) or in tumour biopsy (Kai et al. 2005) has indeed
suggested a role of this cytokine in cancer-related
inflammation. Recent, studies with genetically modified
mice highlights the importance of IL-6 in differen
models of carcinogenesis (Ancrile et al. 2007). Using
both a human kidney cell implanted model and a
DMBA-TPA-induced skin carcinogenesis model Ancril
et al. (2007) demonstrated that IL-6 induction by ras i
crucial for tumour growth. The importance of IL-6 in a
colitis-associated cancer (CAC) model has been demon
strated by other recent studies (Bollrath et al. 2009
Grivennikov et al. 2009). Using genetic tools, they
demonstrated that IL-6, mainly produced by lamina
propria myeloid cells, promotes proliferation and
survival of premalignant intestinal epithelial cells, thu
enhancing both initiation and progression of CAC
(Bollrath et al. 2009; Grivennikov et al. 2009).

The role of IL-7 and IL-17 in cancer-related
inflammation are directly associated with the role played
by Th17T cells in tumour development. Whereas IL-17
promotes survival (Tartour et al. 1999), fibrosarcoma
(Numasaki et al. 2003) and small lung cell carcinoma
(Numasaki et al. 2005) development through th
enhancement of angiogenesis, IL-17 can also inhibi
tumour cell growth due to the recruitment of T cells with
cytotoxic activity against tumour (Benchetrit et al
2002). In line with the anti-tumour role of Il-17
activities, studies by Muranski et al. (2008) demon
strated that adoptive transfer of Th17 cells was the mos
potent in mediating tumour regression as compared with
Th0 or Th1 cells.
Chemokines

Chemokine receptors and their ligands are key
orchestrators of leukocytes trafficking in homeostati
conditions as well as during inflammation and cancer
Further evidence has highlighted that chemokine and
their receptors are part of the molecular pathways tha
drive cancer cell motility, invasiveness and survival
Cancer cells produce chemokines such as CCL2, which
is the pivotal factor for monocytes recruitment, which in
turn supports tumour growth and spread. Further, a
results of their malignant transformation and/or in
response to tumour hypoxia (e.g CXCR4 induction
(Schioppa et al. 2003), they also acquired the expression
of chemokine receptors important for their migration to
and survival at sites that are distant from the primary
tumour. For example, the chemokines receptor CXCR4
is frequently upregulated by malignant cells and fo
different types of tumours (colorectal, breast, liver and
oesophageal cancers) its expression levels by primary
tumours correlate with the frequency of lymphonode
metastasis (Kaifi et al. 2005; Kim et al. 2005; Salvucc
et al. 2006). Similarly, a strong correlation between
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chemokine receptor expression and organ-specific me
tastasis has been described for many different types o
solid cancers (Burns et al. 2006; Kawada et al. 2004
Marchesi et al. 2008; Shields et al. 2007; Shulby et a
2004; Zipin-Roitman et al. 2007). This evidenc
indicates that the chemokine axis is specific both fo
the cancer cell type and the target organ. For example
in breast cancer, expression of both CXCR4 and CCR
predicts lung and lymphonodes metastasis (Zlotni
2004). In contrast, in melanoma, CXCR4 is associate
with pulmonary (Murakami et al. 2004, 2002) and live
metastasis, while CCR7 and CXCR3 is involved wit
lymphonodes metastasis (Monteagudo et al. 2007
Murakami et al. 2004; Takeuchi et al. 2004). I
melanoma, CCR10 is linked with skin metastasi
(Murakami et al. 2004), while CCR9 expressio
correlates with small intestine metastasis (Hwang 2004
Letsch et al. 2004). CX3CR1 expression drives perineur
al dissemination of human pancreatic ductal adenocar
cinoma cells (Marchesi et al. 2008) and migration an
survival of human prostate cancer cells (Shulby et a
2004). Whereas the majority of current cancer therapie
focus on the primary tumour, the identification o
chemokines as key players in cancer metastasis forma
tion have suggested these molecule as a target for th
development of new therapeutics. The high number o
different cancers expressing CXCR4 suggests the desig
of specific antagonists (e.g. CTCE-9908, AMD3100
peptides (T22, TN14003), antibodies, and small inter
fering RNA) all of which gave promising therapeuti
results in a broad range of different preclinical cance
models. Further CTCE-9908, AMD3100, and MSX-12
are currently being tested in different phase I/II trial
(Wong and Korz 2008).
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COX-2

The cycloxygenase-1 and -2 (COX2) enzymes play
key role in the synthesis of lipid inflammatory mediator
(prostaglandins and prostacyclines) from arachidoni
acid and several studies have indicated that aberran
induction of COX2 and prostaglandins are implicated i
the pathogenesis of various type of malignancies
Whereas mice genetically engineered to overexpres
COX-2 in mammary glands, skin or stomach are mor
susceptible to develop tumours in these organs (Muller
Decker et al. 2002; Neufang et al. 2001; Oshima et a
2004), COX2 deficient mice are more resistant t
intestinal, skin and mammary tumourigenesis (How
et al. 2005; Oshima et al. 1996; Tiano et al. 2002). Thes
studies indicate that nonsteroidal anti-inflammator
drugs (NSAIDs) might be used for cancer prevention
Indeed the first study of colorectal cancer preventio
based on sulindac administration was already performe
in 1989 and it resulted in polyps elimination in four o
seven familial adenomatous polyposis patients (Wadde
et al. 1989). Next, several other clinical studies wer
performed in non-polyposis and high risk groups in
order to test different doses of different COX-
inhibitors (aspirin, sulindac, celecoxib, Rofecoxib) fo
both therapeutic and adverse effects (Baron et al. 2003
2006; Bertagnolli et al. 2006; Giardiello et al. 1996, 2002
Higuchi et al. 2003; Sandler et al. 2003; Steinbach et a
2000). These studies have highlighted that COX-
inhibitors are able to suppress adenoma only at high
dose, with a significant increased mortality from
cardiovascular events. Hence NSAIDs somministration
in the general population is not recommended and
combination of NSAIDs with other chemoprevention
agent should be considered.

In addition to therapeutic interventions targetin
COX2, recent studies have identified polymorphisms in
this molecule that could be used as a prognostic marker
for patients with gastric and colorectal cancers (Kim
et al. 2009; Pereira et al. 2009). Recent evidence hav
also demonstrated a positive correlation between COX
expression in primary breast cancer with bone marrow
micrometastasis suggesting that, in addition to color
ectal tumours, COX2 inhibitors may be also useful in
halting breast cancer progression and dissemination
(Lucci et al. 2008).
NF-jB

The transcription factor NF-kB is a key orchestrato
of innate immunity and inflammation and recen
evidence suggest that this transcription factor represent
a potential molecular bridge between inflammation and
cancer (Karin 2006). Indeed, in innate immune, pre
neoplastic and malignant cells NF-kB drives th
expression of inflammatory cytokines, adhesion mole
cules, angiogenic factors and enzymes, like COX-2 an
iNOS, which are important for the synthesis o
inflammatory mediators (PGE2 and NO respectively)
Further, in cancer and epithelial cells exposed to
carcinogens, NF-kB promote cell survival and prolifera
tion through the activation of genes encoding fo
proteins important for cell cycle progression (e.g. cyclin
D1, c-Myc) and anti-apoptotic pathway (cIAPs, A1
BFL1, BCL-2, c-FLIP). In innate immune and in
various cancer cells NF-kB activation is promote b
pro-inflammatory cytokines, such as TNF-a and IL-1
as well as by recognition of pathogen-associated
molecular patterns. In cancer cells NF-kB can be also
activated as a results of cell autonomous geneti
alteration (amplification, mutations or deletions
(Courtois and Gilmore 2006).

Genetic studies targeting NF-kB activation in intest
inal or in liver epithelial cells have demonstrated tha
this factor play a key role in inflammation-associated
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cancer development (Greten et al. 2004; Pikarsky et al
2004). Studies of colitis-associated cancer models in
mice carrying tissue-specific gene targeting of NF-kB
activation have unequivocally demonstrated the impor
tance of inflammation driven by myeloid cells fo
colorectal cancer development (Greten et al. 2004). I
should be noted that genetic targeting of NF-kB in live
epithelial cells can have divergent effect in differen
models of carcinogenesis, possibly dependent on th
balance between promotion of either apoptosis o
compensatory cell proliferation (Maeda et al. 2005
Pikarsky et al. 2004).

Whereas NF-kB activation in myeloid cells i
associated with tumour promotion in inflammation
associated cancer models, in established tumours TAM
have delayed and defective NF-kB activation (Biswa
et al. 2006). Experimental evidence indicate tha
accumulation of p50 NF-kB inhibitory homodimers in
TAMs from murine fibrosarcoma and human ovarian
carcinoma account for defective NF-kB activation a
well as for the pro-tumour phenotype expressed by thes
cells (Saccani et al. 2006). Indeed ablation of p50 result
in the restoration an M1 inflammatory response capabl
to inhibit both fibrosarcoma and melanoma tumour
growth (Saccani et al. 2006). A recent study has showed
that NF-kB activation plays a relevant role in governin
macrophages polarization during different stage o
tumour development (Hagemann et al. 2008).
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HIF-1a

Hypoxia is a common feature of solid tumours tha
has been associated with decreased therapeutic response
malignant progression, local invasion and distan
metastasis. The transcription factor hypoxia inducibl
factor 1 is the major regulator of cell adaptation to
hypoxic stress, as well as the pivotal orchestrator o
angiogenesis and tumour invasion. HIF-1alpha i
upregulated in inflammatory conditions and accumulat
ing evidence indicate interconnections and compensa
tory pathways between the NF-kB and HIF-1alph
systems (Rius et al. 2008).

Due to the central role of hypoxia in tumou
promotion, HIF-1alpha activity in cancer cells repre
sents a suitable prognostic marker for tumour progres
sion (Mariani et al. 2009; Yohena et al. 2009) as well as
potential target for anticancer therapies (Giaccia et al
2003). In this regards, a recent study has demonstrated
that HIF-1alpha expression correlates with the meta
static phenotype of human gastric adenocarcinom
(Rohwer et al. 2009). HIF-1alpha expression is indeed
mainly localized at the invading tumour edge while i
almost absent in early gastric carcers. Further HIF-1
alpha-inhibitor 2-methoxy-estradiol significantly re
duced metastatic properties of gastric cancer cells
suggesting a potential therapeutic benefit of HIF-1alpha
inhibition for metastatic gastric cancer (Rohwer et al
2009). Since the association between hypoxia and
tumour cell radio- and chemo-resistance is known sinc
a long time, the inhibition of HIF1-alpha could be an
efficient strategy to improve the therapeutic effects o
conventional radiation and cytotoxic drugs. Accord
ingly, using a human colon carcinoma cell line growth a
three-dimensional spheroids (which is a model that mor
closely reproduces the hypoxic environment of solid
tumours) Ravizza et al. (2009) have indeed demon
strated that HIF-1alpha ablation by siRNA prevent
hypoxia-induced resistance to different cytoxic drug
and sensitises hypoxic cells to 5-fluorouracil-inducing
apoptosis. In addition to strategies aimed at blocking
HIF-1alpha accumulation or at promoting its degrada
tion, different drugs against several key HIF transcrip
tional targets have been developed and approved fo
clinical use. Among these Bevacizumab, a monoclona
antibody against VEGFA, is currently used for th
treatment of metastatic colorectal cancer (Hurwitz et al
2004).

Despite several experimental evidence indicate tha
hypoxia contributes to tumour progression and spread
few studies suggest that hypoxia can also inhibi
carcenogenesis. Using a multistage murine skin chemica
carcinogenesis model, Scortegagna et al. (2009) hav
demonstrated that papilloma proliferation and thei
malignant conversion was significantly inhibited in
HIF-1 gain of function transgenic mice as compared
with their wild-type counterpart. Further, exposure o
non-small cell lung cancer cells to hypoxia results in
decreased production of soluble and membrane-bound
complement inhibitors and consequently in enhance
ment of complement-mediated killing of cancer cell
(Okroj et al. 2009).
STATs

The importance of STAT-6 activation in tumour
promoting function was suggested by studies performed
with genetically modified mice. Indeed, TAM from
STAT6-/- tumour-bearing mice displayed an M1
phenotype associated with immunologically rejection
of spontaneous mammary carcinoma (Sinha et al
2005).

STAT-3 is constitutively activated in several human
cancer cells and tumour-associated leukocytes and i
represents a point of convergence for several oncogeni
signalling pathways (Yu et al. 2007).This transcription
factor supports oncogenesis through different mechan
isms ranging from the activation of genes crucial fo
proliferation and survival to the enhancement o
angiogenesis and metastasis. The activation of STAT3
in tumour cells has been shown to increase the capacity
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of tumours to evade the immune system by inhibitin
the maturation of dentritic cells (Wang et al. 2004) an
suppressing the immune response (Kortylewski et a
2005). Recently, in a melanoma tumour model, author
emphasized the importance of STAT3 for tumou
progression elucidating new molecular pathways im
portant for STAT-3 immunosuppressive activity (Kor
tylewski et al. 2009). The authors have indee
demonstrated that STAT3 plays a divergent role in th
modulation of IL-23 and IL-12, two related cytokines
which play opposite role in carcinogenesis. In particular
STAT3 inhibits anti-tumour IL-12p35 expression i
dentritic cells while promoting the pro-carcinogenic IL
23 expression in tumour-associated macrophages (Kor
tylewski et al. 2009). Another study of colitis-associate
tumourigenesis has highlighted the mechanisms under
lying the link between STAT3 and inflammatio
(Bollrath et al. 2009). Using genetic modified mic
carrying the intestinal epithelial-cell-specific STAT
ablation or hyperactivation, they demonstrated a dua
role for mucosal STAT3 in mediating an anti-inflam
matory cytoprotective effect as well as in enhancin
tumour growth (Bollrath et al. 2009).

Overall this evidence suggests STAT-3 as a molecula
target for new anti-tumour drugs. In these regards
testing of different small molecule inhibitors of STAT
activation in preclinical model of cancers has give
promising results for their application as anti-tumou
drugs (Costantino and Barlocco 2008; Heimberger an
Priebe 2008).
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Conclusions

Numerous experimental and clinical studies highligh
the pro-tumoral activity of inflammation, while othe
evidence demonstrates that inflammation can suppor
anti-tumour functions. This paradox may reflect specifi
circuits expressed within the tumour microenvironment
Recent evidence has suggested that, a dynamic M
versus M2 change in polarized inflammation occur
during cancer progression. Whereas M1 macrophage
promote tumour initiation and activate an adaptiv
immune response capable to eliminate nascent neoplas
tic cells (elimination phase), tumour progression (equili
brium phase) is paralleled by a gradual switching o
macrophage polarization towards the M2 phenotype
which concurs to the establishment of permissiv
conditions for tumour growth and spread (escap
phase). The gradual inhibition of NF-kB activity i
associated with the M1 versus M2 switching o
macrophage functions (Saccani et al. 2006) (Fig. 3)
Strategies targeting this dynamic change in TAM
functions during different stages of cancer develop
ment may potentially represent a novel anticance
approach. Within this scenario, therapeutic efficacy o
anti-NF-kB strategies against cancers may be subject to
both tumour stage and polarization status of infiltratin
leukocytes.
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