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Synopsis
Increasing evidence from epidemiological, preclinical and clinical studies suggests that dysregulated inflammatory
response plays a pivotal role in a multitude of chronic ailments including cancer. The molecular mechanism(s) by
which chronic inflammation drives cancer initiation and promotion include increased production of pro-inflammatory
mediators, such as cytokines, chemokines, reactive oxygen intermediates, increased expression of oncogenes, COX-2
(cyclo-oxygenase-2), 5-LOX (5-lipoxygenase) and MMPs (matrix metalloproteinases), and pro-inflammatory transcription
factors such as NF-κB (nuclear factor κB), STAT3 (signal transducer and activator of transcription 3), AP-1 (activator
protein 1) and HIF-1α (hypoxia-inducible factor 1α) that mediate tumour cell proliferation, transformation, metastasis,
survival, invasion, angiogenesis, chemoresistance and radioresistance. These inflammation-associated molecules
are activated by a number of environmental and lifestyle-related factors including infectious agents, tobacco, stress,
diet, obesity and alcohol, which together are thought to drive as much as 90% of all cancers. The present review will
focus primarily on the role of various inflammatory intermediates responsible for tumour initiation and progression,
and discuss in detail the critical link between inflammation and cancer.
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INTRODUCTION

Inflammation is a complex process that involves widespread
changes in cellular and molecular components of physiology.
Although controlled inflammation is a necessary process
required for an array of processes including tissue repair, wound
healing and for defence against invading foreign pathogens,
chronic, uncontrolled inflammation is harmful and has now
been linked to a number of human ailments [1,2]. The critical
role of chronic inflammation in cancer was first proposed
by Rudolf Virchow in 1863, when he observed the presence
of leucocytes in neoplastic tissues [3,4]. Virchow postulated
that an inflammatory milieu promotes a cellular environment that
drives the initiation and development of carcinogenesis [1,5].



Abbreviations used: AP-1, activator protein 1; CCR7, CC chemokine receptor 7; COX-2, cyclo-oxygenase-2; CXCL14, CXC chemokine ligand 14; CXCR, CXC chemokine receptor; ECM,
extracellular matrix; EGF, epidermal growth factor; EGFR, EGF receptor; HIF-1α, hypoxia-inducible factor 1α; HPV, human papillomavirus; JAK, Janus kinase; IGF-1, insulin-like growth
factor; IκB, inhibitory κB; IKK, IκB kinase; IL, interleukin; 5-LOX, 5-lipoxygenase; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; NF-κB, nuclear factor κB;
NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; ROS, reactive oxygen species; SCC, squamous cell carcinoma; STAT3, signal transducer and activator of transcription 3;
TAM, tumour-associated macrophage; TNF, tumour necrosis factor; VEGF, vascular endothelial growth factor.
1Correspondence may be addressed to either of these authors (email gautam_sethi@nuhs.edu.sg or vinayt@imcb.a-star.edu.sg).

Within the tumour microenvironment, a network of various
pro-inflammatory mediators participate in a complex signalling
process that facilitates extravasations of tumour cells through the
stroma, thereby promoting tumour progression [6,7]. While acute
inflammation is primarily a self-limiting process and has poten-
tial therapeutic consequences, prolonged chronic inflammation
is mostly detrimental [2,8]. Chronic inflammation is now dubbed
by the popular press as a ‘secret killer’ and has been widely asso-
ciated with diseases such as atherosclerosis, rheumatoid arthritis,
multiple sclerosis, asthma, Alzheimer’s disease and various
cancers [1,3,4].

It is a well-accepted paradigm now that environment- and
lifestyle-related factors play a critical role in development of
90% of all cancers [4,9]. For example, almost 30% of all
cancers have been attributed to tobacco smoke, 35% to diet,
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14–20% to obesity, 18% to infections and 7% to radiation and
environmental pollutants [10]. The molecular mechanism(s) by
which these risk factors induce cancer are becoming increas-
ingly evident and one major process that seems to be common
between all these risk factors is inflammation. Chronic inflamma-
tion acts as a key regulator of tumour promotion and progression
by several mechanisms including accelerated cell proliferation,
evasion from apoptosis, enhanced angiogenesis and metastasis
[11]. The mechanism(s) for cancer development in the pres-
ence of chronic inflammation involves the continuous presence
of cytokines, chemokines, ROS (reactive oxygen species), on-
cogenes, COX-2 (cyclo-oxygenase-2), 5-LOX (5-lipoxygenase),
MMPs (matrix metalloproteinases) and activation of important
transcription factors such as NF-κB (nuclear factor κB) and
STAT3 (signal transducer and activator of transcription 3), AP-1
(activator protein 1) and HIF-1α (hypoxia-inducible factor 1α)
[8,12]. In the present review, we will focus on the role of vari-
ous pro-inflammatory mediators in cancer and provide novel in-
sights into the intricate link between chronic inflammation and
cancer.

ROLE OF TNF (TUMOUR NECROSIS
FACTOR) IN INFLAMMATION-DRIVEN
CANCERS

TNFα was first isolated as an anticancer cytokine more than two
decades ago, but when its antitumour activity was tested on can-
cer patients, a paradoxical tumour-promoting role of TNFα be-
came apparent [13–15]. At present, the pro-inflammatory role of
TNFα has been linked to all steps involved in tumorigenesis, in-
cluding cellular transformation, survival, proliferation, invasion,
angiogenesis and metastasis [15,16].

TNFα has been reported to be produced by a wide variety of
tumour cells, including those of B-cell lymphoma [17], mega-
karyoblastic leukaemia [18], adult T-cell leukaemia [19], breast
carcinoma [20], colorectal cancer, lung cancer, SCC (squamous
cell carcinoma), pancreatic cancer [21,22], ovarian carcinoma
[23], the cervical epithelial cancer [24], glioblastoma [25] and
neuroblastoma [26]. The pro-inflammatory potential of TNFα

has also been analysed in various animal models of cancer. In a
genetic model of liver cancer, TNFα produced by myeloid cells
promoted inflammation-associated tumours [27] and also in a
chemical-induced model of colorectal cancer, TNFα produced
by macrophages has been implicated in inflammation and sub-
sequent tumour development [15]. Endogenous and exogenous
TNFα showed an enhancement of metastasis in an experimental
fibrosarcoma metastasis model [28]. Elevated levels of TNFα

have also been detected in various cancer patients. For example,
the TNFα gene was found to be expressed in 45 of 63 biopsies of
human epithelial ovarian cancer [23]. Moreover, it has been found
that, in CLL (chronic lymphocytic leukaemia) patients, TNFα

level was significantly higher as compared with the healthy con-

trol population and it also acted as a predictor of patient survival
[29]. Thus, novel strategies that neutralize systemic TNFα may
be useful in cancer treatment and prevention.

ROLE OF IL (INTERLEUKIN) IN
INFLAMMATION AND CANCER

Several ILs have been linked with inflammation and subsequent
cancer development. These ILs include IL-1, IL-6, IL-8 and IL-
17. IL-1α, which is expressed in both normal tissue and several
tumour cells, is a regulatory cytokine that can induce the activ-
ation of transcription factors, including NF-κB and AP-1, and
promote the expression of various genes involved in cell sur-
vival, proliferation and angiogenesis [30]. Also, direct evidence
for the role of IL-1β in human cancer has been found in multiple
myeloma. IL-1β when released by myeloma cells can induce the
production of IL-6 by bone marrow stromal cells and function
as an autocrine growth factor for myeloma cells [31]. IL-1β also
up-regulates HIF-1α protein through a classical inflammatory
signalling pathway involving NF-κB and COX-2, culminating in
up-regulation of VEGF (vascular endothelial growth factor), a po-
tent angiogenic factor required for tumour growth and metastasis
[32]. In another study, surgical removal of the ovarian tumour and
resolution of ascites in patient was found to be directly associated
with decrease in serum levels of IL-1β [33].

IL-6 is another major pro-inflammatory cytokine that has been
implicated in inflammation-associated carcinogenesis [34,35].
IL-6 modulates the expression of genes involved in proliferation,
survival and angiogenesis via the JAK (Janus kinase)–STAT sig-
nalling pathway [36]. RCC (renal cell carcinoma) cell lines con-
taining mutant p53 have been found to produce higher levels of
IL-6 than those containing wild-type p53 [37]. Moreover, the ana-
lysis of biopsy specimens from inflammation-associated gastric
cancers has revealed that the levels of IL-1β and IL-6 are highly
elevated in tumours as compared with adjacent normal mucosa
[38]. An overproduction of IL-6, indicated by increased plasma
CRP (C-reactive protein) levels, has also been found in 37%
of multiple myeloma patients at diagnosis and is associated with
disease aggressiveness, myeloma-cell proliferation and poor pro-
gnosis [39]. Increased serum levels of IL-6 have been observed to
be positively correlated with tumour burden in colorectal cancer
patients with high significance [40]. In another study, inflammat-
ory markers were measured at baseline in 52 patients with stage
IV colorectal cancer, and significantly elevated levels of IL-6 and
gp130 were observed in these patients and inflammatory markers
paralleled clinical outcome [41].

Constitutive expression of IL-8 mRNA and secreted IL-8 pro-
tein has been observed in various tumour cell lines and animal
models, thus suggesting that IL-8 secretion could be a key factor
involved in proliferation, angiogenesis and metastasis of cancer
cells [42]. It has been reported that acidic pH can induce elevation
in IL-8 expression in human ovarian cancer cells and transcription
factors; AP-1 and NF-κB were found to be responsible for this
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process [43]. Huang et al. [44] have further found that the neutral-
izing antibodies to IL-8 can inhibit angiogenesis, tumour growth
and metastasis of human melanoma, suggesting the potential util-
ity of anti-IL-8 as a modality to treat melanoma and other solid
tumours either alone or in combination with conventional chemo-
therapy or other antitumour agents. In another report, tumour-
derived IL-8 has been shown to induce the differentiation and
activation of osteoclasts, underpinning the characteristic osteo-
lytic metastasis of breast cancer cells that have disseminated
to the bone [45]. Furthermore, Maxwell et al. [46] determined
whether hypoxia can increase IL-8 and IL-8 receptor expression
in prostate cancer cells and whether this contributes to a survival
advantage in hypoxic cells. Indeed, they found that IL-8, CXCR1
(CXC chemokine receptor 1) and CXCR2 mRNA expression in
prostate cancer PC3 cells was up-regulated in response to hypoxia
in a time-dependent manner. They also found that the inhibition of
IL-8 signalling potentiated etoposide-induced cell death in hyp-
oxic PC3 cells [46]. These results indicate that IL-8 signalling
confers a survival advantage to hypoxic prostate cancer cells,
and therefore strategies to inhibit IL-8 signalling may sensitize
hypoxic tumour cells to conventional treatments. IL-17, another
important cytokine, has also been found to act as a growth factor
in cutaneous T-cell lymphoma and a key regulator of angiogenesis
[47]. IL-17-overexpressing human cervical cancer [48], fibrosar-
coma [49] and human NSCLC (non-small cell lung cancer) pref-
erentially exhibit higher oncogenic growth in vivo [50].

ROLE OF CHEMOKINES IN
INFLAMMATION AND CANCER

Chemokines are soluble chemotactic cytokines that are grouped
into four classes based on the positions of key cysteine residues:
C, CC, CXC and CX3C [8,51,52]. Several studies have reported
the involvement of chemokines and chemokine receptors in cell
proliferation, migration, and invasion and metastasis of different
types of tumours [53–55].

The chemokine receptors CXCR4 and CCR7 (CC chemokine
receptor 7) are highly expressed in human breast cancer cells,
malignant breast tumours and metastasis [56]. In breast cancer
cells, signalling through CXCR4 or CCR7 mediates actin poly-
merization and pseudopodia formation and subsequently induces
chemotactic and invasive responses [56]. It has been reported that
CXCR4 and SDF-1 (stromal-cell-derived factor 1) induces pro-
liferation in ovarian cancer cells, and this correlated with EGFR
[EGF (epidermal growth factor) receptor] transactivation. The
functional chemokine receptor CCR3 has been shown to be up-
regulated in human RCC [57]. CXCL14 (CXC chemokine ligand
14) [BRAK (breast and kidney chemokine)] RNA expression has
been observed in normal and tumour prostate epithelium and fo-
cally in stromal cells adjacent to cancer [58]. In vivo, neutralizing
the interactions of CXCL12/CXCR4 significantly impairs meta-
stasis of breast cancer cells to regional lymph nodes and lung
[59]. Thus chemokines and their receptors have a critical role in

determining the metastatic destination of tumour cells. A list of
various ILs and chemokines associated with cancer initiation and
promotion is briefly summarized in Table 1.

ROLE OF ONCOGENES IN
INFLAMMATION-DRIVEN CANCER

Oncogenes are altered versions of normal cellular genes, the so-
called proto-oncogenes, involved in the regulation of cell growth
[60,61]. Recently, it has become increasingly evident that pleio-
tropic effects of oncogenes also include the induction of a pro-
tumour microenvironment, through the persistent promotion of
an inflammatory milieu [61–63]. For example, Liu et al. [64]
have shown that HRAS- and KRAS-G12V induce the expression
of various cytokines, including IL-1α, IL-1β, IL-6, CXCL8 and
IL-11 in human ovarian cells [64]. Moreover, transcription factor
NF-κB is activated in Ras-transformed ovarian epithelial cells
and this activation is responsible for the increased expression
of CXCL8 [65]. Furthermore, Ancrile et al. [66] have demon-
strated that IL-6 acts downstream of Ras in a paracrine fashion
to promote angiogenesis. Recent reports indicate that Myc on-
cogene can also orchestrate a complex inflammatory program
[67]. Myc activation in β-cells rapidly induces the expression
and release of the pro-inflammatory cytokine IL-1β that, in turn,
mediates the release of VEGF-A from mast cells and onset of
tumour angiogenesis [68]. Mast cell activation is required not
only for angiogenesis during outgrowth of Myc-dependent islet
tumours but also for tumour maintenance and the inhibitors of
mast cell function trigger hypoxia and cell death of tumour and
endothelial cells [69]. Moreover, four mutually exclusive genetic
lesions have been identified in papillary thyroid carcinoma, cov-
ering approx. 80% of the cases: rearrangements of Ret or Trk
genes and activating mutation of Ras or Braf genes [70]. Thus,
several oncogene-driven inflammatory pathways are activated in
various human cancers and are likely to play a key role in various
stages of carcinogenesis.

ROLE OF OXIDATIVE STRESS IN
CHRONIC INFLAMMATION AND
CANCER

Reactive oxygen intermediates, also generically referred to as
oxidants, are derivatives of molecular oxygen such as superox-
ide, H2O2, hypochlorous acid, singlet oxygen and the hydroxyl
radical [71–73]. Chronic inflammation is often accompanied
by increased production of tissue reactive oxygen intermediates
[74]. ROS can alter signal transduction cascades as well as in-
duce changes in transcription factors such as NF-κB, NF-E2/rf2
or Nrf2 (nuclear factor erythroid 2/related factor 2) and AP-1
that mediate immediate cellular stress responses [75,76]. The
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Table 1 Role of ILs and chemokines in cancer
MIP-3α, macrophage inflammatory protein-3α.

Cancer type Inflammatory mediator Mechanism(s) Reference

Bladder cancer IL-6 Transformation [193]

Multiple myeloma IL-6 poly Proliferation [194]

Colorectal cancer IL-6 Increased risk [195]

Melanoma IL-18 Metastasis [196]

Pancreatic carcinoma IL-1α Metastasis [197]

Prostate cancer IL-8 poly Angiogenesis [198]

Lung carcinoma IL-1α Angiogenesis [32]

Melanoma IL-8 Tumour growth [199]

Glioblastoma IL-8 Angiogenesis [200]

RCC IL-6 Autocrine growth [37]

Pancreatic carcinoma IL-1β Chemoresistance [201]

Ovarian tumours IL-8 Disease progression [202]

Tumour IL-8 Growth, angiogenesis [203]

Lung carcinoma IL-1β Growth [204]

Breast cancer CXCR4 and CCR7 Metastasis [56]

Melanoma CXCR4 and CCR7, Metastasis [56]

Ovarian carcinoma CXCR4/CXCL12 Invasion and growth [43]

RCC CCR3 Higher risk [57]

Pancreatic carcinoma MIP-3α and CCR6 Cell invasion [205]

Ovarian carcinoma CXCR4 and SDF1 Proliferation [206]

Prostate carcinoma CXCL14 Inhibits tumour growth [58]

pro-neoplastic activity of ROS is mainly due to their ability to
cause DNA damage [77]. Oxidative damage to DNA has also been
linked to aflatoxin B-induced p53 and Ras gene mutations in hep-
atocarcinogenesis [78] and in UV-induced mouse and human skin
cancers [79]. Agents that either scavenge reactive oxygen inter-
mediates or prevent their formation inhibit the induction of DNA
damage, mutagenesis and transformation by inflammatory pha-
gocytes. This forms the basis for the theory that dietary antioxid-
ants can inhibit the development or progression of cancer [80–82].

OVEREXPRESSION OF COX CAN
MEDIATE INFLAMMATION-
ASSOCIATED CANCERS

COX-2, an inducible enzyme regulated by NF-κB, is known to
mediate tumorigenesis [11,83]. COX-2, the inducible isoform
of prostaglandin H synthase, has been implicated in the growth
and progression of a variety of human cancers. COX-2 has been
shown to regulate colorectal cancer-induced angiogenesis by two
mechanisms: COX-2 can modulate the production of angiogenic
factors by colon cancer cells, while COX-1 regulates angiogen-
esis in endothelial cells. It has been found that COX-2 and
mPGES (membrane-associated prostaglandin E synthase) were
induced in the COX-1-expressing fibroblasts in human familial

adenomatous polyposis polyps [84]. Administration of the COX-
2-selective inhibitor rofecoxib or the functional inactivation of
the COX-2 in adenomatous polyposis coli knockout mice, a mur-
ine model of human adenomatous polyposis, reduced the number
and the size of intestinal polyps [85,86], thereby indicating the
correlation between the abnormal up-regulation of COX-2 and
tumorigenesis.

COX-2 expression in human tumours can be induced by
growth factors, cytokines, oncogenes and other factors. For ex-
ample, IL-1β has been reported to up-regulate COX-2 in hu-
man colorectal cancer cells via multiple signalling pathways
[87]. COX-2 has also been implicated in the progression of hu-
man lung adenocarcinoma. Steady-state levels of COX-2 mRNA
were high in well-differentiated adenocarcinoma samples but
low in poorly differentiated adenocarcinoma, SCC and small
cell lung cancer. COX-2 overexpression enhanced the in vitro
expression of both CXC ligand CXCL8 and CXCL5, NSCLC
angiogenic peptides in the NSCLC cell lines [88]. COX-2 ex-
pression was observed to be strong in the SCCs and weak in
oesophageal ADCs (adenocarcinomas) [89]. COX-2 expression
levels in tumour specimens from patients with low- and high-
grade astrocytomas indicated a correlation between the percent-
age of COX-2 expression and patient survival [90]. Overexpres-
sion of COX-2 is also associated with a poor prognosis in patients
with SCC of the uterine cervix treated with radiation and con-
current chemotherapy [91]. Levels of COX-2 expression were
also found to be a significant prognostic factor for patients with
multiple myeloma [92]. Overall survival of those patients
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with negative or weak-to-moderate COX-2 expression was signi-
ficantly better than that of patients with strong COX-2 immuno-
reactivity. These findings indicate that high COX-2 expression
in tumour cells is associated with clinically more aggressive tu-
mours and is a strong predictor of poor survival.

OVEREXPRESSION OF 5-LOX LINKS
INFLAMMATION AND CANCER

5-LOX is a key enzyme in the metabolism of arachidonic acid
to leukotrienes [93]. Several studies suggest that there is a link
between 5-LOX and carcinogenesis in humans and animals [93–
95]. Abundance of the mRNA for arachidonate 5-LOX, which
is the rate-limiting enzyme in leukotriene synthesis, has been
investigated in a series of human brain tumours [96]. The 5-LOX
transcript is expressed in human brain tumours and the 5-LOX
gene product may play a role in human tumour-induced brain
oedema [96].

Studies also indicate that the exposure to the mainstream
smoke of unfiltered cigarettes enhanced the 5-LOX protein ex-
pression in the inflammation-associated colonic adenomas [97].
Such expression was accompanied by an up-regulation of MMP-
2 and VEGF, the key angiogenic factors for tumorigenesis and
5-LOX inhibitors were found to decrease the incidence of colonic
adenoma formation and reduced angiogenesis, MMP-2 activity
and VEGF protein expression [97]. In addition, the increased
expression of 5-LOX has been linked with the progression and
development of cancer of the pancreas [98], breast [99] and kid-
ney [100].

ROLE OF MMP IN INFLAMMATION
AND CANCER

MMPs are a multigene family of zinc-dependent endopeptidases
that share a similar structure and which collectively have the
capacity to degrade ECM (extracellular matrix) [101]. MMPs
are now also implicated in the EMT (epithelial to mesenchymal
transition), a hallmark of cancer progression to metastasis [102].
It has been observed that MMP-9 is a potent regulator of the
angiogenic switch in a pancreatic tumour model [103]. MMP-9 is
up-regulated in angiogenic dysplasias and invasive cancers of the
epidermis in a mouse model of multi-stage tumorigenesis elicited
by HPV16 (human papillomavirus 16) oncogenes [104]. In gene
expression profiles associated with poor outcome of patients with
breast tumours, two of the 70 genes identified were found to be
MMP-1 and MMP-9 [105]. In another study, patient survival,
gene overexpression and RNAi (RNA interference) validation
data showed that MMP-1 is the second most important gene in a
95-gene expression profile in determining the metastatic potential
of breast cancer to produce lung metastases [106]. Expression of
MMP-9 has also been correlated with prognosis, aggressiveness

Table 2 Role of inflammatory enzymes (COX2, 5-LOX and
MMP-9) in cancer
AC, adenocarcinoma.

Tumour Enzyme References

Breast cancer COX-2 [207,208]

Glioma COX-2 [90]

Prostate cancer COX-2 [209]

Melanoma COX-2 [210,211]

Oesophageal adenocarcinoma COX-2 [212]

Oesophageal SCC and AC COX-2 [89]

Urinary bladder COX-2 [213]

Pancreatic cancer COX-2 [214]

Head and neck SCC COX-2 [215]

Lung carcinoma COX-2 [216,217]

Gastric carcinoma COX-2 [218]

Colorectal cancer COX-2 [84,219]

Brain tumours 5-LOX [96,220]

Colorectal cancer COX-2 and 5-LOX [221]

Pancreatic cancer MMP-9 [103]

Skin cancer MMP-9 [104]

and survival in cancer of the lung [107], stomach [108] and
oesophagus [109], RCC and in NHL (non-Hodgkin’s lymphoma)
[110]. A role of COX-2, 5-LOX, and MMPs in cancer is briefly
summarized in Table 2.

ROLE OF TRANSCRIPTION FACTOR
NF-κB IN CHRONIC INFLAMMATION
AND CANCER

The transcription factor NF-κB, first discovered by David Bal-
timore in 1986, is present in the nucleus and binds the promoter
of immunoglobulin κ chain in B-cells. In mammalian cells, the
NF-κB family of transcription factors is composed of homodi-
mers and heterodimers derived from five distinct subunits, RelA
(p65), c-Rel, RelB, p50 (NF-κB1) and p52 (NF-κB2). All family
members share a highly conserved RHD (Rel homology domain;
∼300 amino acids) responsible for DNA binding, dimerization
domain and interaction with IκBs (inhibitory κBs), the intracel-
lular inhibitor of NF-κB [111–113]. In unstimulated cells, the
majority of NF-κB complexes are predominantly cytoplasmic
and in an inactive form due to their binding to the IκB fam-
ily of proteins that prevent DNA binding and as a consequence
prevent nuclear accumulation [114]. Generally, the inactive NF-
κB/IκBα complex is activated by phosphorylation on two con-
served serine residues within the N-terminal domain of the IκB
proteins. Phosphorylation of these conserved serine residues in
response to stimulation leads to the immediate polyubiquitin-
ation of IκB proteins by the SCF-β-TrCP (transducin repeat-
containing protein-β-transducin repeat-containing protein) com-
plex. This modification subsequently targets IκB proteins for
rapid degradation by the 26S proteasome [115]. Activation of
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Figure 1 Mechanisms of constitutive activation of NF-κB
Abbreviations: BAFF, B-cell activating factor belonging to the TNF family; BAFFR, B-cell activating factor belonging to the
TNF family receptor; CARD11, caspase recruitment domain family 11; Dbl/Dbs, transforming protein isolated from diffuse
B-cell lymphoma; EBV, Epstein Bar virus; ELAM-1, endothelial cell leucocyte adhesion molecule 1; Flt3, fms-related tyrosine
kinase 3; GADD, growth arrest and DNA-damage inducible; GSK3β, glycogen synthase kinase 3β; HBV, hepatitis B virus;
HCV, hepatitis C virus; HDAC, histone deacetylase; HER2, erythroblastic leukaemia viral oncogene; HHV-8, human herpes
virus 8; HTLV-1, human T-cell leukaemia virus type 1; ICAM-1, intracellular adhesion molecule 1; IRF2, interferon regulatory
factor 2; KSHV, Kaposi’s sarcoma-associated herpes virus; LMP1, latent membrane protein 1; LT-βR, lymphotoxin β

receptor; MUC1, mucin 1; PDGFR, platelet-derived growth factor receptor; TEL-Jak2, telomere maintenance-Janus kinase
2; TRAF, TNF-receptor-associated factor; uPA, urokinase plasminogen activator; VCAM-1, vascular cell adhesion molecule
1; vFLIP, viral FADD-like interleukin-1β -converting enzyme (FLICE)/caspase-8-inhibitory protein; XIAP, X-linked inhibitor of
apoptosis.

the NF-κB signalling cascade is a consequence of degradation of
IκB proteins, allowing nuclear accumulation of NF-κB, due to
DNA binding [116–119]. NF-κB is activated by many divergent
stimuli, including pro-inflammatory cytokines (e.g. TNFα, IL-
1), T- and B-cell mitogens, bacteria, LPS (lipopolysaccharide),
viruses, viral proteins, double-stranded RNA and physical and
chemical stresses. Activated NF-κB binds to specific DNA se-
quences in target genes, designated as κB elements, and regulates
transcription of over 400 genes involved in inflammation, im-
munoregulation, tumour cell proliferation, invasion, metastasis,
angiogenesis, chemoresistance and radioresistance [120–124].

Numerous studies have indicated that tumour cells exhibit con-
stitutive production of the pro-inflammatory cytokines TNFα, IL-
1α, IL-6, GM-CSF (granulocyte/macrophage colony-stimulating
factor) and KC (keratinocyte chemoattractant) [2,125]. Produc-
tion of tumour-promoting cytokines by immune/inflammatory
cells that activate NF-κB, along with other transcription factors
such as AP-1 and STAT3 in premalignant cells to induce genes
that stimulate cell proliferation and survival, is a major tumour-
promoting mechanism [2,125]. For instance, inhibition of TNFα

production by non-parenchymal cells (Kupffer and endothelial
cells) prevented NF-κB activation in hepatocytes and in early
tumours and reduced tumour multiplicity [27]. Greten et al.
[126] reported that deleting IKKβ (IκB kinase β) in myeloid
cells caused suppression of NF-κB, activation and diminished
expression of inflammatory cytokines, thus leading to a signific-
ant decrease in tumour size. The host environment promotes the
constitutive activation of NF-κB and pro-inflammatory cytokine
expression during metastatic tumour progression of various can-
cers [113,127,128].

What causes the constitutive activation of NF-κB in various tu-
mour cells is not fully understood. Many different mechanism(s)
have been described, including overexpression of growth factor
receptors, mutation of IκBα such that it cannot bind to NF-κB,
constitutive activation of Ras protein, high proteolytic activity
directed to IκBα, and autocrine secretion of inflammatory cy-
tokines (Figure 1). It has also been shown that IκB proteins do
not bind and export NF-κB that is phosphorylated at p65. Indeed
phosphatases of p65 such as WIP1 (wild-type p53-induced phos-
phatase) have recently been identified with removed phosphates
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from p65 and make NF-κB more submissive to IκB-mediated
nuclear export [129]. Constitutive activation of NF-κB also has
been linked to chemoresistance and radioresistance in various
tumour cell lines and in animal models [113,124]. It is also well
known that it blocks the function of p53 tumour suppressor by
causing its degradation [130–132]. Activation of IKKs in re-
sponse to inflammatory stimuli has also been shown to deregu-
late cell cycle [133]. Thus the activation of NF-κB represents the
central event in linking the process of chronic inflammation to
different aspects of tumorigenesis. Indeed agents that simultan-
eously target the p53 and NF-κB pathway should be developed
further in the treatment of cancers [134–136].

An association between the development of cancer and inflam-
mation is further strengthened by studies of the role of NF-κB
in tumour-infiltrating leucocytes [137]. For example, myeloid-
lineage-specific inactivation of the gene encoding IKKβ was
found to inhibit cancer-related inflammation in the intestine, as
well as colitis-associated cancer, providing evidence that inflam-
matory cells are involved in carcinogenesis [126]. Defective NF-
κB has also been reported in T-lymphocytes of patients with RCC
[138]. In established advanced tumours, which typically have
an inflammatory milieu [139], TAMs (tumour-associated mac-
rophages) have delayed and defective NF-κB activation [140].
Inhibition of NF-κB activation in TAMs has also been repor-
ted to correlate with impaired expression of NF-κB-dependent
inflammatory functions [141] and to exhibit the alternatively ac-
tivated, ‘M2’, phenotype [137]. Evidence suggests that homo-
dimers of the p50 subunit of NF-κB (a negative regulator of the
NF-κB pathway) are responsible for this slow activation of NF-
κB in TAMs and for the pro-tumour phenotype of these cells
[142]. Thus, NF-κB seems to function as a ‘rheostat’ whose
function can be tuned to different levels, predisposing individu-
als towards developing cancer, and enables TAMs to maintain the
inflammatory milieu [137]. Although several experimental and
clinical results clearly indicate inflammation having a pro-tumour
consequence, some reports also demonstrate the inverse. For ex-
ample, a marked chronic inflammatory response is not associated
with an increased risk of developing melanoma [143]. Also, in
certain tumours, the presence of inflammatory cells is associated
with better prognosis [144]. These observations appear to reveal
that inflammatory cells can destroy tumour cells, in addition to
normal tissue cells. Taken together, evidence indicates that NF-
κB is an important determinant of the balance between the pro-
tumour and anti-tumour properties of macrophages [142,145] and
thus NF-κB could be targeted to ‘re-educate’ tumour-promoting
macrophages towards an anti-tumour role [145].

ROLE OF STAT3 IN INFLAMMATION
AND CANCER

STAT3 was originally identified as a DNA-binding protein that re-
sponds to stimulation by EGF and IL-6 and has an important role
in their signalling [146,147]. On activation, STAT3 undergoes

phosphorylation-induced homodimerization, leading to nuclear
translocation, DNA binding and subsequent gene transcription
[148]. The phosphorylation is mediated through the activation of
non-receptor protein tyrosine kinases called JAKs. JAK1, JAK2,
JAK3 and TYK2 have been implicated in the activation of STAT3
[147,149]. Constitutive activation of STAT3 has been observed
in many kinds of solid tumours and haematological malignancies
[4,150] and this persistently active STAT3 is thought to contrib-
ute to oncogenesis by modulating the expression of a variety
of genes involved in cell proliferation, invasion, metastasis and
angiogenesis [151,152].

Chronic inflammatory conditions that drive carcinogenesis
can also be attributed to genetic alterations that directly affect
the STAT3 pathway [149]. The importance of constitutively act-
ive mutations in GP130, which encodes a subunit of the IL-6
receptor, has been demonstrated in human inflammatory HCC
(haemofiltrate CC chemokine) [153]. A critical role for STAT3 in
inflammation-induced adenocarcinomas was also demonstrated
using a transgenic mouse model with a constitutively active
GP130 in epithelial cells [154]. Studies in mice with GP130
mutations demonstrated that an increase in GP130 and STAT3
signalling led to inflammation-associated gastric tumorigenesis
[155]. Several infectious agents also exert their tumorigenic ef-
fects through STAT3 activation and depend on STAT3 for their
oncogenic potential [149]. For instance, infection with Helico-
bacter pylori, which is associated with gastric cancer, activates
STAT3 through its cytotoxin-associated gene A in host cells
[156]. In addition, a critical role of STAT3 activation in mediating
UV-light-induced skin cancer in a transgenic mouse model and
cigarette-smoke-associated cancer development has also been
demonstrated [157,158].

STAT3 can also act in close liaison with NF-κB to mediate
various steps involved in initiation, promotion and development
of cancer [159]. Moreover, NF-κB and STAT3 control both dis-
tinct and overlapping groups of genes involved during tumori-
genesis [149]. Global profiling of STAT3-dependent genes in
mouse lung cells revealed a large number of genes whose expres-
sion is controlled by STAT3, among which a number of typical
NF-κB target genes are also present [160]. Furthermore, in a
recent study, it was demonstrated that obesity-promoted hep-
atocellular carcinoma development was dependent on enhanced
production of the tumour-promoting cytokines IL-6 and TNFα,
which cause hepatic inflammation and activation of the STAT3
[161]. Thus STAT3 activation pathway also is an important con-
tributor to inflammation-induced cancers, making it an attractive
target for treating and/or preventing inflammation.

ROLE OF AP-1 IN INFLAMMATION
AND CANCER

The transcription factor AP-1 produced by 18 different dimeric
combinations of proteins from the Jun (c-Jun, JunB and JunD) and
Fos (c-Fos, FosB, Fra-1 and Fra-2) families, plays a critical role
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in variety of cellular processes, including inflammation, prolifer-
ation, differentiation and apoptosis [162–164]. When activated,
AP-1 recognizes and binds to the TRE (TPA response element)
or cAMP response element within the promoter region of tar-
get genes [165]. Activation usually occurs both transcriptionally
and post-translationally in response to a broad range of external
stimuli, including growth factors, pro-inflammatory cytokines,
chemokines, ECM and is mediated predominantly through the
MAPK (mitogen-activated protein kinase) [ERK (extracellular-
signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38
MAPK] cascade [166,167]. In addition to being activated by on-
cogenic signal transduction cascades, AP-1 is itself strongly on-
cogenic [168]. Endogenous c-fos and c-jun are also oncogenes as
indicated by their potential to morphologically transform murine
fibroblasts, causing density- and anchorage-independent growth
in these cells [169,170]. Moreover, inhibition of Fos and Jun
expression in murine fibroblasts and erythroleukaemia cells has
indicated that AP-1 is required for cell proliferation and cell-cycle
progression [164].

AP-1 is also overexpressed in a large number of tumours
and transformed cell lines and targeted inhibition of its activ-
ity in these model systems suggest a pivotal role for AP-1 in
oncogenic transformation and progression [163,164]. Dominant-
negative constructs of c-fos and c-jun can reverse the transformed
phenotype induced by activated Ras and also inhibit the invas-
iveness and tumorigenesis of keratinocytes [171]. Several AP-1
target genes are also implicated in the invasive phenotype, includ-
ing the MMPs MMP-1, MMP-3 and MMP-9 [172], the ECM-
associated protein osteonectin/SPARC (secreted protein acidic
and rich in cysteine) [173], the PKC (protein kinase C) sub-
strate SSeCKS (Src-suppressed C-kinase substrate) [174] and
the angiogenic factor, autotaxin [175]. Interestingly, suppression
of c-jun activity by using a dominant-negative c-jun in basal ker-
atinocytes or conditional inactivation of c-jun in the liver resulted
in the inhibition of the development of chemically induced papil-
lomas and liver tumours respectively [176,177]. Moreover, using
mice overexpressing c-fos, Wang et al. [178] showed an intimate
relationship between c-fos expression levels and chondrogenic
tumour development. Furthermore, AP-1 has also been found to
interact with pro-inflammatory transcription factor NF-κB, and
the dominant-negative Jun has been reported to inhibit both AP-1
and NF-κB activity in HPV-immortalized human keratinocytes
[179]. Thus AP-1 acts as a master regulator of gene expression
in response to oncogenic signal transduction cascades in a wide
variety of tumour cell and animal models and can be considered
as an important target for novel anti-cancer therapies.

ROLE OF HIF-1α IN INFLAMMATION
AND CANCER

HIF-1 is a heterodimeric transcriptional complex composed of
an α-subunit and a β-subunit [180,181]. The HIF-1α subunit

is generally unstable and undergoes proteasomal degradation in
normoxia, whereas the β-subunit is permanently present in nuc-
lei irrespective of the state of oxygenation [182]. Recent studies
have shown that a number of peptidic and non-peptidic mediators
of inflammation can activate HIF-1α even under normoxic con-
ditions [183]. These include cytokines, hormones such as insulin
or IGF-1 (insulin-like growth factor 1) and IGF-2, and vasoactive
peptides, such as angiotensin II [183]. Among various cytokines,
TNFα and IL-1β were first shown to increase HIF-1α activity
in the human hepatoma cell line HepG2 [184]. HIF-1α stimu-
lates the expression of several genes encoding the proteins that
promote inflammatory reactions. These include erythropoietin,
VEGF and VEGF receptor, iNOS (inducible nitric oxide syn-
thase), COX-2, glucose transporters and a number of glycolytic
enzymes [185,186]. Moreover, the accumulation of HIF-1α in the
absence of apparent hypoxic stimulation has been demonstrated
in a number of different cancers, in contrast with benign tumours
and normal tissues. For example, immunohistochemical analyses
of tissue sections have shown HIF-1α to be highly expressed in
many tumour types including pancreatic, head and neck, breast,
renal, ovarian, bladder, brain, colorectal and prostate [185]. HIF-
1α overexpression has also been found to correlate with increased
angiogenesis and metastasis and thus can be used as a marker to
predict outcome in patients with metastatic cancers [181]. Thus,
targeting the HIF-1α pathway provides an attractive strategy to
treat various hypoxic and metastatic tumours.

CONCLUSION AND PERSPECTIVES

There is growing evidence, as described above, which is highly
suggestive that chronic inflammation is a critical mediator of
various aspects of development of cancer. It is becoming immin-
ently clear that chronic inflammation contributes to carcinogen-
esis at all three stages: initiation, proliferation and progression.
Some of the agents that have the potential to suppress these
pro-inflammatory mediators and are being tested include TNFα

blockers (such as thalidomide, enbrel, humira and remicade), IL-
1 blockers (canakinumab and anakinra), NF-κB inhibitors (such
as curcumin, resveratrol and roscovitine) and COX-2 inhibitors
(such as celecoxib). However, while most evidence discussed
above indicates that pro-inflammatory cytokines, enzymes, on-
cogenes and transcription factors play a pivotal role in mediating
tumorigenesis, the existing literature also suggests that inhibi-
tion of pro-inflammatory pathways is not always beneficial. For
example, in a skin cancer mouse model, the pro-inflammatory
transcription factor NF-κB has been reported to inhibit tumour
formation [187]. Furthermore, in Mdr2-knockout mice, bile duct
tumours are rarely found, despite extensive inflammation, NF-
κB activation and abundant proliferation of bile ducts in portal
spaces [27]. Another recent report indicates that inhibition of
NF-κB activation can accelerate hepatocellular carcinoma de-
velopment and enhance proliferation of tumour-initiating cells
[188]. And finally, administration of TNFα blockers to patients
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with rheumatoid arthritis have been found to increase the risk
for developing lymphomas [189], thereby suggesting that inhib-
ition of pro-inflammatory pathways can act as a double-edge
sword.

Therefore novel strategies such as identification of specific
adaptors of IKK complex like ELKS [190] and Rap1 [191]
will allow development of better inhibitors of IKK and hence
NF-κB which are less likely to have adverse side effects.
Moreover, genetic studies in patients with hyper-IgE syndrome
identified dominant-negative STAT3 gene mutations as the prob-
able cause of the disease in few patients [192]. Thus a detailed
elucidation of the underlying mechanism(s) will help us to bet-
ter understand the interaction between tumour cells and their
inflammatory microenvironment, and consequently how to inter-
fere and block such pro-tumour biomarkers with minimum toxic
effects. Targeted therapies that can interfere with the recruitment
of bone-marrow-derived cells or specifically directed at specific
components of the tumour microenvironment can also be util-
ized in the future as treatment regimens for inflammation-driven
cancers.
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