
Multicellular organisms, from plants to 
vertebrates, are constantly subject to envi-
ronmental, intracellular and extracellular 
insults. Examples of such insults include 
pathogens, DNA damage and metabolic 
stress. To mount an appropriate repair 
response to these insults, the organism 
requires mechanisms that identify the 
source of the problem and engage suitable 
effectors. Cellular insult is identified by the 
innate immune system through various 
cellular receptors that orchestrate protec-
tion and repair mechanisms — such as the 
nucleotide-binding oligomerization domain 
(NOD)-like receptors (NLRs), the retinoic 
acid-inducible gene I-like receptors (RLRs) 
and the Toll-like receptors (TLRs). Often, 
these pathways are successful; however,  
if the source of cellular stress cannot be 
resolved, damaged cells are committed to 
suicide by apoptosis or necrosis and targeted 
for removal by specialized immune cells. 
 Here, we review the proposed activation 
mechanisms of one such receptor responsi-
ble for recognizing cellular stress. NLR  
family, pyrin domain-containing 3 (NLRP3; 
also known as NALP3 or cryopyrin) was 
recently identified to form a cytoplasmic 
complex known as the NLRP3 inflamma-
some, which potently modulates innate  
immune function by regulating the matu-
ration and secretion of pro-inflammatory 
cytokines, such as interleukin-1β (IL-1β). 
The finding that hyperactivity of this  
complex underlies several human diseases, 
including Muckle–Wells syndrome (a type 

of cryopyrin-associated periodic syndrome), 
emphasizes the importance of this pathway.  
A precise understanding of the signals  
that activate the NLRP3 inflammasome  
is therefore crucial for the development  
of new anti-inflammatory drugs.

Stress signalling is evolutionarily conserved
Given that the range of potential cellular 
insults has not changed markedly during 
evolution, it is not surprising that the path-
ways triggered by cellular stress situations 
are also highly conserved. Plants respond 
to pathogens or metabolic stress by rapidly 
activating a battery of defence responses1–4. 
For example, pathogen invasion of a resist-
ant plant can result in macroscopic lesions 
that form as a result of cellular necrosis 
termed the ‘hypersensitive response’. The 
hypersensitive response is associated with 
several physiological changes, including  
transient opening of ion channels, in 
particular Ca2+ and K+ channels, and/or 
the production of reactive oxygen species 
(ROS). Similarly in mammals, pathogen 
recognition by receptors of the innate 
immune system, such as TLRs and NLRs, 
triggers a range of inflammatory responses, 
often including the generation of ROS and 
the modulation of Ca2+ and K+ ion fluxes 
(reviewed in Ref. 5).

Stress-induced ROS function as an 
alarm signal that triggers efficient defence 
responses by modulating specific signal 
transduction pathways that use hydrogen 
peroxide as a secondary messenger, such 

as the pathway leading to the NFE2-related 
factor 2 (NRF2)-mediated antioxidant 
response6. ROS activity is rigorously control-
led by a versatile antioxidant system that 
modulates intracellular ROS concentration. 
Nonetheless, if stress is prolonged, ROS 
concentrations can overcome the scavenging 
action of the antioxidant system, resulting in 
extensive cellular damage and necrosis.

In plants, resistance (R) genes are impli-
cated in ROS sensing and generation and 
are crucial for plant defences, including the 
hypersensitivity response, against pathogens 
and other stressors1–4. The largest class of 
R genes encodes cytoplasmic proteins with 
structural homology to mammalian stress 
sensors, the NLRs. Both NLRs and R pro-
teins have carboxy-terminal leucine-rich 
repeats (LRRs), a central oligomerization 
module (NB-ARC or domain present in 
NAIP, CIITA, HET-E and TP1 (NACHT)) 
and an amino-terminal effector domain5. 
The N terminus of plant R proteins often 
contains a Toll/interleukin-1 receptor (TIR) 
domain; in mammals, the TIR domain is a 
well-known protein interaction motif that 
transduces signalling induced by IL-1 recep-
tor (IL-1R) and TLRs5. In humans, common 
NLR N-terminal effector domains include 
pyrin domain (PYD), caspase-recruitment 
domain (CARD) and baculovirus inhibi-
tor of apoptosis protein repeat (BIR)7, 
which have presumably evolved to enable 
connections to new signalling pathways. 
For example, NLRP3 has an N-terminal 
PYD that enables the assembly of the 
inflammasome complex.

Consistent with the structural similarity of 
stress-sensing receptors between plants and 
mammals, the signalling pathways engaged 
by these receptors are also similar. In both 
plants and mammals, stress signalling follows 
the same general scheme: first, stress situa-
tions are detected directly or indirectly by a 
sensor protein (such as an NLR or R protein); 
second, subsequent oligomerization of the 
sensor allows the recruitment of effector 
proteins; and finally, activation of effector 
proteins engages cellular repair responses. In 
mammals, the archetypal example of this acti-
vation scheme is the formation of the NLRP3 
inflammasome during early innate immune 
responses to pathogens or endogenous danger 
signals. The NLRP3 inflammasome contains 
NLRP3, the adaptor protein apoptosis-
associated speck-like protein containing a 
CARD (ASC; also known as PYCARD) and 
the effector cysteine protease caspase 1 (Ref. 8). 
Following detection of cellular stress, NLRP3 
oligomerizes through homotypic interactions 
between NACHT domains (fig.1). The PYD 
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of NLRP3 is then exposed for interaction with 
the PYD of ASC. The CARD of ASC in turn 
recruits pro-caspase 1 through CARD–CARD 
interactions. Pro-caspase 1 clustering on 
oligomerized NLRP3 results in caspase 1 
auto-activation and caspase 1-dependent 
processing of cytoplasmic targets, including 
the pro-inflammatory cytokines IL-1β and 
IL-18, which mediate repair responses such 
as angio genesis and neutrophil influx to 
remove cellu lar debris. The mature cytokines 
are released from the cell by an unconven-
tional secretion pathway that is currently not 
defined9. ASC and caspase 1 are co-secreted 
with IL-1β and IL-18 (Ref. 10), but the extra-
cellular functions of ASC and caspase 1, if any, 
are not known.

Activators of the nLRp3 inflammasome
Various danger signals activate the NLRP3 
inflammasome (TABLe 1). These include 
whole pathogens, pathogen-associated 
molecular patterns (PAMPs) and other 
pathogen-associated molecules (such as 
bacterial pore-forming toxins and the 
malaria parasite product haemozoin). 
Environmental irritants (such as asbestos) 
and damage-associated molecular patterns 
(DAMPs), which are host-derived mol-
ecules that are indicative of cellular damage 
(such as extracellular ATP), also activate 
the NLRP3 inflammasome. The mecha-
nisms by which these structurally distinct 
molecules trigger NLRP3 oligomerization 
and inflammasome activation are cur-
rently unclear and have been intensely 

debated in recent literature7. However, all 
of the proposed models agree that cyto-
plasmic K+ concentration crucially affects 
inflammasome activation, and K+ efflux 

from the cell should be factored into any 
proposed scheme for NLRP3 inflamma-
some activation. Cytoplasmic K+ concen-
tration in healthy cells is ~140–150 mM, a 
concentration that does not allow NLRP3 
activation. ATP, a potent activator of the 
NLRP3 inflammasome, decreases intra-
cellular K+ concentration by approximately 
50%11. Accordingly, a shift in cytoplasmic 
K+ concentration to less than 70 mM is 
required for NLRP3 inflammasome activ-
ity in vitro12. Inhibition of K+ efflux by 
high extracellular K+ concentration blocks 
inflammasome activation in response to 
the imiquimod R837, the gout-associated 
crystal mono sodium urate (MSu), the bac-
terial ionophore nigericin, ATP, asbestos, 
malarial haemozoin and Candida albicans 
(reviewed in Ref. 5). Interestingly, low cyto-
plasmic K+ concentration is also required 
for the activation of the apoptosome (the 
caspase-containing protein complex that 
forms during the process of apoptosis), 
which indicates that ‘normal’ intracellular 
concentrations of K+ safeguard the cell 
against inappropriate formation of caspase-
containing stress complexes in general13. 
Although the mechanism by which cyto-
plasmic K+ concentration modulates NLRP3 

Figure 1 | Mechanism of NLRP3 inflammasome complex formation. Under healthy cellular condi-
tions, NLR family, pyrin domain-containing 3 (NLRP3) is auto-repressed owing to an internal interaction 
between the NACHT domain and LRRs. This auto-repression is removed in the presence of pathogen-
associated molecular patterns (PAMPs) from microorganisms or damage-associated molecular patterns 
(DAMPs) from endogenous danger signals. This results in exposure of the NACHT domain. In turn, NLRP3 
oligomerizes and recruits apoptosis-associated speck-like protein containing a CARD (ASC; also known 
as PYCARD) and pro-caspase 1, triggering the activation of caspase 1 and the maturation and secretion 
of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and IL-18. Other cytoplasmic proteins, such 
as enzymes of the glycolytic pathway, are also substrates of active caspase 1. CARD, caspase-recruitment 
domain; LRRs, leucine-rich repeats; NACHT, NAIP, CIITA, HET-E and TP1; PYD, pyrin domain.

Table 1 | proposed signalling pathways for nLRp3 inflammasome activators

Activator Proposed signalling pathway Refs

Microorganisms (PAMPs)

Sendai virus ND 31

Influenza virus ND 31,32

Adenovirus ROS *

Candida albicans ROS 33

Saccharomyces cerevisiae ROS *

Staphylococcus aureus ROS 10

Listeria monocytogenes ND 10,34

Bacterial pore-forming toxins ROS *

Endogenous danger signals (DAMPs)

Extracellular ATP ROS and channel formation 10

Hyaluronan ND 35

Glucose ROS 24

MSU ROS 12

Amyloid-β Lysosome rupture 21

Environmental irritants

Skin irritants ROS *

Imidazoquinoline compounds ROS *

Silica ROS and lysosome rupture 22,36

Asbestos ROS 25,36

Alum ROS and lysosome rupture 37

DAMPs, damage-associated molecular patterns; MSU, monosodium urate; ND, not determined; NLRP3, 
NLR family, pyrin domain-containing 3; PAMPs, pathogen-associated molecular patterns; ROS, reactive 
oxygen species. *C. Dostert and J.T., unpublished observations. 
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inflammasome activation is unknown, it 
seems that intracellular K+ depletion alone 
is not sufficient for NLRP3-mediated IL-1β 
processing and secretion14. 

nLRp3 inflammasome activation models
Three models for activation of the NLRP3 
inflammasome have been proposed.

The channel model. Extracellular ATP is 
a NLRP3 agonist that is released at sites of 
cellular injury or necrosis. ATP-mediated 
inflammasome activation depends on acti-
vation of the P2X7 ATP-gated ion channel, 
which triggers rapid K+ efflux from the cell15 
and gradual recruitment and pore forma-
tion of the pannexin 1 hemichannel14,16. 
Pannexin 1 is a gap junction protein, but it 
does not seem to form functional gap junc-
tions in vivo. Instead, pannexin 1 functions 
as a membrane channel that carries ions and 
signalling molecules between the cytoplasm 
and the extracellular space. As such, it is a 
candidate ATP release channel in various 
cell types17. One model of inflammasome 
activation proposes that P2X7-dependent 
formation of the pannexin 1 hemichannel 
allows extracellular NLRP3 activators, in 
particular bacterial products, to access the 
cytoplasm and to interact with and activate 
NLRP3 directly16 (fig. 2). In support of such a 
model, bacterial muramyl dipeptide (MDP) 
that has been phagocytosed translocates 
from acidified phagocytic vesicles into the 

cytoplasm through a pathway that depends 
on pannexin 1 function18. Moreover, heat 
killed bacteria activate the NLRP3 inflamma-
some when artificially delivered to the  
cytoplasm by the streptococcal pore-forming 
protein streptolysin O19. Pore formation as 
described in this model also provides an 
explanation for the potent NLRP3-activating 
properties of bacterial pore-forming pro-
teins such as the α-toxin of Staphyloccocus 
aureus10. Any pore in the plasma membrane 
would also automatically lead to K+ efflux 
from the cell, which is a requirement for 
inflammasome activation, adding to the 
appeal of this model. However, so far there 
have been no reports showing direct inter-
action between NLRP3 and an inflammasome 
agonist, and, given the structural diversity 
of activating stimuli, it is difficult to imagine 
that NLRP3 might sense more than a few of 
its activating extracellular stimuli directly. 
Moreover, some NLRP3 agonists, such as 
MSu crystals or the particulate asbestos, 
are too large for cytoplasmic translocation 
through any type of channel or pore. So, 
although a specific subset of NLRP3 agonists 
could enter cells through membrane pores 
and bind directly to NLRP3, this model  
cannot account for NLRP3 inflammasome 
activity in response to all stimuli.

The lysosome rupture model. An alterna-
tive model of inflammasome activation 
that takes into account the size of the 

activators is the lysosome rupture model20,21. 
According to this model, which is particularly 
useful for explaining NLRP3 inflammasome 
activation by large particulate activators (such 
as alum and silica), inefficient clearance of the 
activating particle following phagocytosis 
leads to phagosomal destabilization and lyso-
some rupture (fig. 3). The ensuing release of 
the lysosomal protein cathepsin B into the 
cytoplasm triggers inflammasome activation 
directly or indirectly through an uncharac-
terized pathway. This model is supported by 
observations that cathepsin B inactivation 
in human cells by a cathepsin B inhibitor 
impairs NLRP3 inflammasome activation  
in response to particulate activators and  
that artificial lysosome disruption is  
sufficient for spontaneous NLRP3 activ-
ity20. However, it is still unclear whether 
this signalling pathway is functional in 
mice. Initial results showing decreased 
IL-1β secretion by macrophages derived 
from mice deficient in cathepsin B21 could 
not be confirmed by others22. This might 
indicate that this inflammasome activation 
pathway is restricted to humans or involves 
other cathepsins in mice; it is also possible 
that the cathepsin B inhibitor suppresses 
NLRP3 activation in humans through an 
off-target effect on a component of the 
NLRP3 inflammasome cascade other than 
cathepsin B, as recently suggested for the 
effects of a cathepsin B inhibitor on NALP1 
inflammasome activity23.

The ROS model. A third model proposes 
that NLRP3 is a more general sensor of 
cellular stress through its activation by 
ROS generated in spatial and temporal 
proximity to the inflammasome12,24. All 
NLRP3 activators that have been examined, 
including ATP and particulate activators 
such as asbestos and silica (thus including 
activators that trigger channel formation 
and that cause lysosome rupture), trigger 
the generation of short-lived ROS, and 
treatment with various ROS scavengers 
blocks NLRP3 activation in response to 
a range of agonists12,25. ROS generation is 
frequently accompanied by K+ efflux26; the 
interplay between these pathways is cur-
rently unclear, but it is possible that low 
intracellular K+ concentration triggers ROS 
production or vice versa. ROS-mediated 
inflammasome activation and K+ efflux for 
agonists other than ATP are independent of 
the channel activity of P2X7 (Ref. 14).

A recent report gives some insight 
into the molecular events potentially 
driving ROS-dependent inflammasome 
activation24. Treatment with NLRP3 

Figure 2 | The channel model of NLRP3 inflammasome activation. The NLR family, pyrin 
domain-containing 3 (NLRP3) inflammasome is activated by extracellular ATP, which stimulates the 
P2X7 K+ release channel, which in turn leads to formation of the associated pannexin 1 pore. This 
pore, as well as pores formed by bacterial toxins, allows cytoplasmic entry of extracellular factors 
that are direct NLRP3 ligands and also allows K+ efflux from the cell. ASC, apoptosis-associated speck-
like protein containing a CARD; DAMPs, damage-associated molecular patterns; IL, interleukin; 
PAMPs, pathogen-associated molecular patterns.
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agonists triggers the association of NLRP3 
with thioredoxin-interacting protein 
(TXNIP; also known as VDuP1), in a 
ROS-dependent manner. In unstimulated 
cells, TXNIP is constitutively bound to 
and inhibited by the oxidoreductase thio-
redoxin. Following an increase in cellular 
ROS concentration, this complex dissoci-
ates and TXNIP binds to NLRP3 (mainly 
to the LRRs), leading to NLRP3 activation 
(fig. 4). In support of such an activation 
mechanism, knockdown of thioredoxin 
potentiates inflammasome activation24,25. 
Furthermore, TXNIP knockout or knock-
down impairs caspase 1 activation and 
IL-1β secretion in macrophages following 
stimulation by various NLRP3 agonists, 
including R837, particulates such as MSu, 
alum or silica, and ATP24. Notably, capase 1 
activation is not blocked completely in 
the absence of TXNIP, which indicates that 
other regulators of inflammasome activity 
exist and that other pathways might function 
together with the ROS pathway to initiate a 
complete inflammatory response.

An integrated model of nLRp3 action? 
Although our current understanding of 
the signalling pathways that direct NLRP3 
inflammasome activation is rudimentary, 
we think that ROS are crucially involved, 
which is consistent with their evolutionar-
ily ancient role in plant defence responses. 
However, many aspects of ROS-dependent 
inflammasome activation remain unknown 

(BOX 1). For example, the source of ROS that 
activate the inflammasome is still unchar-
acterized. NADPH oxidases are a potential 
source of ROS in professional phagocytes, 
and they are most likely to function in 
ROS-dependent inflammasome activa-
tion by particulate agonists. In this case, 

‘frustrated phagocytosis’ caused by the inef-
ficient clearance of phagocytosed material 
is likely to ultimately result in chronic acti-
vation of NADPH oxidases and excessive 
ROS production25. At least seven NADPH 
oxidase complexes exist, five of which 
have a common P22PHOX (also known as 
CYBA) subunit27. Knockdown of P22PHOX 
impaired NLRP3 inflammasome activation 
by many stimuli25. However, macrophages 
deficient in subunits specific to three indi-
vidual NADPH oxidase complexes (NOX1, 
NOX2 and NOX4) respond normally to 
inflammasome activators (C. Dostert and 
J.T., unpublished observations), which indi-
cates that another P22PHOX-dependent 
oxidase might be responsible for generat-
ing NLRP3-activating ROS or that there is 
functional redundancy between NAPDH 
oxidase complexes. Alternatively, other 
sources of cellular ROS, such as mito-
chondria or xanthine oxidase, cannot be 
excluded.

Is it possible to link the ROS model 
to the other two proposed signalling 
pathways? The activation of NLRP3 by 
particulates might be explained by both 
lysosome rupture and ROS models; phago-
cytosed particulates that are too large to be 
efficiently cleared are likely to induce the 
production of ROS on their way to lyso-
somes, where they cause the rupture of the 
organelle. So, the lysosome rupture model 

Figure 4 | The reactive oxygen species model of NLRP3 inflammasome activation. All NLR family, 
pyrin domain-containing 3 (NLRP3) agonists that have been tested trigger the production of reactive 
oxygen species (ROS) . ROS production results in NLRP3 inflammasome activation through release of 
the ROS-sensitive NLRP3 ligand thioredoxin-interacting protein (TXNIP) from its inhibitor thioredoxin 
(TRX). ASC, apoptosis-associated speck-like protein containing a CARD; DAMPs, damage-associated 
molecular patterns; IL, interleukin; PAMPs, pathogen-associated molecular patterns. 

Figure 3 | The lysosome rupture model of NLRP3 inflammasome activation. Crystalline or  
particulate structures (such as alum and silica) are phagocytosed, leading to lysosome rupture and the 
cytoplasmic release of cathepsin B. Cathepsin B, either directly or through cleaving an unidentified 
substrate, induces activation of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome. 
ASC, apoptosis-associated speck-like protein containing a CARD; DAMPs, damage-associated 
molecular patterns; IL, interleukin; PAMPs, pathogen-associated molecular patterns.
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could be viewed as forming part of a more 
general ROS pathway. Phagocytosis, lead-
ing to lysosome rupture, would be essen-
tial for ROS generation by particulates, 
whereas smaller activators such as ATP 
that do not need to be phagocytosed could 
induce the production of ROS differently, 
for example through the activation of the 
P2X7 receptor.

However, it is more difficult to inte-
grate the channel model with the ROS or 
lysosome rupture models, as they con-
stitute different fundamental mechanisms. 
Whereas the channel model proposes 
the physical entry of activators into the 
cytoplasm to allow direct contact with 
NLRP3, neither the ROS nor lysosome 
rupture models propose such a mecha-
nism; instead, they posit that the NLRP3 
inflammasome is activated through 
signals that indicate intracellular stress, 
such as ROS or cytoplasmic cathepsin B, 
respectively. This does not mean that 
the channel model is not important for 
inflammasome activation in response to 
certain stimuli.

Future directions
Future studies are required to address the 
many unresolved questions (BOX 1) in this 
field, as further insight into the signalling 
pathways leading to NLRP3 inflammasome 
activation will be important for the devel-
opment of new therapeutic anti-inflamma-
tory drugs. The potential for therapeutics 
targeting this pathway is exemplified by 
the recent success of IL-1 antagonists for 
the treatment of patients with cryopyrin-
associated periodic syndromes or gout (in 
which deposition of MSu crystals in the 
joints is thought to trigger inflammasome 
activation)28.
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 Box 1 | Unresolved questions regarding nLRp3 inflammasome activation

All three of the signalling models described have their limitations and substantial additional 
work is required to clarify their relative contributions to activation of the NLR family, pyrin 
domain-containing 3 (NLRP3) inflammasome. In particular, the following aspects need to be 
addressed:

K+ efflux 
The evidence that K+ efflux is crucial for NLRP3 activation is mainly based on assays in which a 
high concentration of extracellular K+ suppresses NLRP3 activation29. Although this is widely 
interpreted by the field as a requirement for K+ efflux for NLRP3 activation, the finding that 
extracellular K+ inhibits inflammasome activation does not necessarily mean that cytoplasmic K+ 
depletion normally occurs during activation. We know that ATP induces robust K+ efflux11, but 
there is no direct experimental evidence that K+ efflux takes place during stimulation of a cell 
with particulate or crystalline NLRP3 activators. 

The channel model 
There is no direct evidence that the pannexin 1 pore is used for the entry of NLRP3 activators into 
the cytoplasm. The small peptide inhibitor that is used to inhibit pannexin 1 and block the entry of 
muramyl dipeptide14 is unlikely to be specific, and experiments using pannexin 1-deficient cells 
have not yet been reported.

The lysosome rupture model and cathepsin B 
Evidence that lysosome rupture can cause NLRP3 inflammasome activation is based on the use of 
the dipeptide l-leucine-leucine methyl ester (LeuLeuOMe) as a lysosomotropic agent. Given its 
small size, LeuLeuOMe is likely to have off-target effects that are independent of lysosome 
rupture. Similarly, the cathepsin B-specific inhibitor CA-074 Me, which was used to show the 
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