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Abstract: The specific component responsible and the mechanistic pathway for increased 

human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 

1) injury and disease following cigarette smoking are associated with exposure to and retention 

of particles produced during smoking and 2) the biological effects of particles associated with 

cigarette smoking share a single mechanism of injury with all particles. Smoking one cigarette 

exposes the human respiratory tract to between 15,000 and 40,000 µg particulate matter; this 

is a carbonaceous product of an incomplete combustion. There are numerous human exposures 

to other particles, and these vary widely in composition, absolute magnitude, and size of the 

particle. Individuals exposed to all these particles share a common clinical presentation with 

a loss of pulmonary function, increased bronchial hyperresponsiveness, pathologic changes of 

emphysema and fibrosis, and comorbidities, including cardiovascular disease, cerebrovascular 

disease, peripheral vascular disease, and cancers. Mechanistically, all particle exposures pro-

duce an oxidative stress, which is associated with a series of reactions, including an activation 

of kinase cascades and transcription factors, release of inflammatory mediators, and apoptosis. 

If disease associated with cigarette smoking is recognized to be particle related, then certain aspects 

of the clinical presentation can be predicted; this would include worsening of pulmonary function 

and progression of pathological changes and comorbidity (eg, emphysema and carcinogenesis) 

after smoking cessation since the particle is retained in the lung and the exposure continues.
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Introduction
Smoking is one of the ten greatest contributors to global death and disease1 and is the 

single most important risk factor for chronic obstructive pulmonary disease (COPD), 

 cardiovascular disease, cerebrovascular disease, peripheral vascular disease, and  numerous 

cancers in the United States.2 The specific component responsible and the mechanistic 

pathway for increased human morbidity and mortality after cigarette smoking are yet to 

be delineated. Cigarette smoking is a particle-related exposure. While obvious disparities 

exist between cigarette smoking and exposures to other particles, there are many similari-

ties in the physiologic changes, pathology, and comorbidities. We propose that 1) injury 

and disease following cigarette smoking are associated with exposure and retention of 

particles produced during smoking and 2) the biological effects of particles associated 

with cigarette smoking share a single mechanism of injury with all particles.

Human exposures to particles
In a burning cigarette, temperatures in the combustion zone (800°C–950°C) result in a 

complete pyrolysis of tobacco.3 Immediately downstream, a rapid drop in temperature 
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(to 200°C–600°C) and a lack of oxygen allow for incomplete 

combustion of tobacco. Subsequently, a complex aerosol is 

generated during smoking, which includes condensed liquid 

droplets (the particulate fraction or tar) suspended in a mix-

ture of volatile and semivolatile compounds and combustion 

gases (the gas fraction). Smoking one cigarette exposes the 

human respiratory tract to between 15,000 and 40,000 µg 

particulate matter (PM).4 The composition of cigarette 

smoke PM is comparable to that of other particles gener-

ated through an incomplete combustion of carbonaceous 

material, and this includes a heterogeneous, amorphous, 

organic material.5–7

Human exposures to other particles vary in composi-

tion, absolute magnitude, and size of the particle (Table 1). 

After cigarette smoking, the burning of biomass (defined as 

some combination of wood, charcoal, agricultural residues, 

and animal dung) is likely to be the PM source of greatest 

significance internationally. More than 2 billion people in the 

world use biomass as their main source of energy for domestic 

heating and cooking, and 80% of total global exposure to PM 

occurs indoors in developing nations.

Particle-related lung injury
Individuals exposed to all these different particles share a 

common clinical presentation. Depending on the compo-

sition, magnitude, and duration of the particle exposure, 

there can be 1) loss of pulmonary function, 2) increased 

bronchial hyperresponsiveness, 3) pathological alterations 

of emphysema and fibrosis, 4) hemorheological changes, 

and 5) comorbidities, including cardiovascular disease, 

cerebrovascular disease, peripheral vascular disease, and 

cancers.

Loss of pulmonary function
Smoking cigarettes decreases all indices of lung function but 

particularly affects flows.8 On an average,  moderate-to-heavy 

male smokers have a 15 mL/year larger decline in forced expi-

ratory volume in 1 sec relative to nonsmokers.9 The greater 

the number of cigarettes smoked (ie, pack years), the higher 

the rate of decline in lung function.9 The extreme loss of 

function after cigarette smoking can result in COPD, a major 

cause of morbidity and mortality throughout the world. 

COPD, a disease state characterized by airflow limitation that 

is not fully reversible, is currently the fourth leading cause of 

death in the world, and further increase in the prevalence and 

mortality of the disease is predicted in the coming decades. 

Internationally, the prevalence of COPD is highest in coun-

tries where cigarette smoking is common.10

Other particle exposures are similarly associated with 

loss in pulmonary function and COPD. Environmental 

tobacco smoke (ETS),11–13 woodstove emissions,14 use of 

gas stoves, burning of biomass other than wood,15–19 and air 

pollution particles20 decrease indices of pulmonary  function. 

COPD has been observed among nonsmoking individu-

als exposed to both open fires/burning of biomass21,22 

and occupational dusts, including coal and mineral oxide 

particles.23

Bronchial hyperreactivity
Cigarette smoking24,25 and ETS exposure26,27 elevate bron-

chial hyperresponsiveness. There is a dose-dependent 

relationship between the number of cigarettes smoked and 

the degree of hyperresponsiveness.28 Particles other than 

those in cigarette smoke similarly affect bronchial hyper-

responsiveness. Diesel exposure has been associated with 

Table 1 Particle-related exposures associated with human lung injury

Particle source Composition of particle Magnitude of exposure Particle size

Cigarette smoking Carbonaceous combustion product 15,000–40,000 µg/cigarette Fine and ultrafine
Environmental tobacco  
smoke137–139

Carbonaceous combustion product #1000 µg/m3 Fine and ultrafine

Forest fires140 Carbonaceous combustion product #1000 µg/m3 but variable Fine and ultrafine
Wood-burning stove141–143 Carbonaceous combustion product #1200 µg/m3 Fine and ultrafine
Gas stove144,145 Carbonaceous combustion product #1380 µg/m3 Fine and ultrafine
Diesel exhaust146,147 Carbonaceous combustion product #10 µg/m3 in ambient air

,1000 µg/m3 in mines
Ultrafine

Burning of biomass145,148–150 Carbonaceous combustion product #10,000 µg/m3 but variable Coarse, fine, and ultrafine
Air pollution151 Variable #50 µg/m3 nationally

#500 µg/m3 internationally
Coarse, fine, and ultrafine

Coal mining Carbonaceous #2000 µg/m3 nationally Coarse and fine
Mining of minerals Inorganic (eg, silica and silicates) #1000 µg/m3 for silica

#5000 µg/m3 for nuisance dust
Coarse and fine
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comparable changes in bronchial hyperresponsiveness.29 

The response to methacholine also increases following 

 exposure of firefighters.30–32 Occupational exposure to dust 

can increase airway  reactivity, including both coal dust24,33 

and mineral oxide.34 This  relationship between particle expo-

sure and bronchial responsiveness is widely recognized, and 

a challenge inhalation with particles has been proposed as 

an alternative to methacholine testing.35,36

Lung histopathology
Cigarette smoking has been associated with an acute influx 

of neutrophils into the lower respiratory tract.37 This is 

 comparable to other particle-associated injuries,  including 

exposures to ambient air pollution particles and diesel 

exhaust.38,39

The two chronic pathologic processes noted on micro-

scopic inspection of the lungs from individuals exposed to 

particles are emphysema and fibrosis. Emphysema is most 

frequently caused by cigarette smoking, but is also observed 

after other particle exposures, including burning of biomass,40 

mineral oxide,23,41,42 and coal dust.43–47 Histologically, 

emphysema, following all these exposures, including ciga-

rette smoking, occurs immediately adjacent to the retained 

particle.48–51 In one animal study, the emphysema severity 

was dependent on the concentration of cigarette smoke total 

PM.52 Mucous cell hyperplasia, hypertrophy, and inflamma-

tory cell infiltrates were present in the epithelium of large 

airways of cigarette smoke–exposed mouse lungs. Further, 

allowing the mice to recover from cigarette smoke exposure 

was not associated with reversal of emphysema, and cigarette 

smoke–induced pulmonary inflammation also persisted.

Fibrosis can also be observed following exposures 

to numerous different particle exposures. Increased col-

lagen is frequently observed in the lungs of cigarette 

smokers,53–55 and irregular opacities reflecting this fibrosis 

can be observed on their chest X-rays comparable to those 

in pneumoconioses.23,56–58 Collagen deposition and fibrosis 

in the human lung have been described following exposure 

to ambient air pollution particles,59 environmental exposure 

to crustal particles (eg, windstorms),60,61 and inhalation 

of emission source particles.62 This fibrogenic property of 

particles is exploited therapeutically with the instillation of 

gram quantities of a mineral oxide (ie, talc) particle into the 

pleural space to provide sclerosis.63

Hemorheological changes
Cigarette smoking leads to a rise in hematocrit, increased 

total white cell count, and modified leukocyte function. 

Elevations in the plasma concentrations of fibrinogen are also 

associated with smoking;64,65 a dose–response relationship 

between smoking and the plasma fibrinogen level has been 

described.66 Following smoking cessation, plasma fibrinogen 

will drop immediately but takes 5 years to return to normal.67 

Abnormalities in platelet function can similarly occur with 

smoking with an increase in platelet aggregation occurring 

as rapidly as 10 min after smoking a cigarette.68,69

Other particle exposures elicit comparable changes in 

blood components. ETS exposure can be associated with 

platelet aggregation.70 Ambient air pollution particles effect 

several changes in the peripheral blood, including decreases 

in red cell number,71 elevations in white blood cell counts,71 

and increases in C-reactive protein,71 fibrinogen,38,71,72 and 

blood viscosity;71,73 the last two potentially contribute to 

the association of ambient PM with thrombotic events.74 

Other particles have comparable effects on hemorheologic 

indices.75,76

Comorbidities
Cigarette smoking is the major risk factor in many industri-

alized societies for cardiovascular disease and increases the 

prevalence of coronary artery disease,77,78 cerebrovascular 

disease,79 and peripheral vascular disease.80 Convincing 

evidence also links ETS exposure to both cardiac morbid-

ity and mortality and peripheral vascular disease.81 Forest 

firefighting82 and diesel exhaust83 similarly elevate the rate 

of cardiovascular disease. The inhalation of ambient air 

pollution PM can increase the incidence of myocardial 

infarction,84 hospital admission for cardiovascular diseases,85 

and the rate of arrhythmias.86 Finally, exposures to mineral 

oxide and coal dust can be associated with an increased risk 

for cardiovascular disease.87,88

There are elevations in the incidence of cancer with 

either cigarette smoking89 or exposure to ETS.90,91 There is 

also concern for an induction of neoplasms by other particle-

associated injuries, including that induced by diesel exhaust,92 

forest fire fighting,93 burning of biomass other than wood,94 

the use of wood-burning stoves,95 and occupational exposures 

to silica.96 Recent investigation has similarly suggested a 

carcinogenicity of ambient air pollution particles.97

Mechanism of injury following  
particle exposures
Shared characteristics of the physiologic response,  pathology, 

and comorbidities between PM included in cigarette smoke 

and other particles suggest a common mechanism of biologi-

cal effect. All particle exposures produce an oxidative stress. 
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A generation of reactive oxygen species results either 

directly from some component of the particle supporting an 

 inappropriate electron transfer or from an interaction of the 

PM with cell proteins (eg, electron transport complexes in 

the mitochondria). Oxidative stress is accepted as the initial 

step in the biological effect after cigarette smoking98 and all 

other particle exposures.99

Oxidants generated by particle exposures can cause 

sequential changes culminating in tissue injury (Figure 1). 

Among the early cell targets of oxidative stress are kinase 

cascades. Mitogen-activated protein (MAP) kinases (p38 

MAP kinase family, the extracellular signal-regulated kinase 

(ERK) family, and the c-Jun NH
2
-terminal kinase (JNK) 

family) are widely expressed serine–threonine kinases 

which mediate regulatory signals in the cell. The activation 

of specific MAP kinase signaling cascades is required for 

induction of various cellular responses, including phospho-

rylation of transcription factors (eg, NF-E2-related factor 2 

(Nrf2), nuclear transcription factor-kappaB (NF-kB), and 

activator protein-1 (AP-1)) and transcriptional regulation, 

nuclear chromatin remodeling and gene induction, cytokine 

production, as well as regulation of apoptosis and cell-cycle 

progression.100 Exposure to cigarette smoke leads to activa-

tion of MAP kinases and pro-inflammatory transcription 

factors (Nrf2, NF-kB, and AP-1), and this is considered to 

be a key mechanistic event leading to cell  differentiation, 

release of inflammatory mediators, and inflammatory 

injury in the lungs.101–107 Regarding one transcription factor, 

macrophage exposure to cigarette smoke induced nuclear 

accumulation of Nrf2 and activated the transcription of 

Nrf2 target genes.108 This suggests that Nrf2 in macrophages 

may participate in the human response to cigarette smoke 

exposure. Basal Nrf2 mRNA levels and Nrf2 target gene 

expressions were significantly lower in alveolar macrophages 

obtained from 1) older current smokers relative to and from 

lifelong nonsmokers and 2) patients with COPD relative to 

nonsmokers and former smokers without COPD. The same 

cascade of reactions (Figure 1) appears to also participate in 

cell apoptosis after cigarette smoke exposure.109–114

The pathway of inflammation and apoptosis following 

exposure to other particles is indistinguishable from that 

after cigarette smoke exposure (Figure 1). Numerous PM 

exposures activate the same kinases and pro-inflammatory 

transcription factors observed with cigarette smoke.115–118 

Comparable to cigarette smoke, the same particles sub-

sequently affect a release of inflammatory and apoptotic 

mediators.119–124

Activation of kinase cascades and transcription factors 

following particle exposure can also effect an inflammatory 

and apoptotic response in extrapulmonary sites. Mainstream 

cigarette smoke exposure is associated with activation of 

p38 and ERK1/2 MAP kinases.125 Ambient air pollution 

particles similarly induce reactive oxygen species generation 

in human endothelial cells, resulting in cell barrier disrup-

tion via p38 MAP kinase–dependent pathways.126,127 These 

findings support one common pathway for biological effect 

of all particles in all tissues.

Conclusions
Particle-related biological effects continue to be defined. 

Investigation has demonstrated comparable effects of ciga-

rette smoke and other particle-related exposures. A shared 

mechanism of biological effect between cigarette smoking 

and other particle exposures would further understanding of 

human disease. If disease associated with cigarette smoking 

is recognized to be particle related, then certain aspects of the 

clinical presentation can be predicted. For example, worsen-

ing of pulmonary function and progression of pathological 

changes after smoking cessation is predicted since the par-

ticle continues to be sequestered in the lung, and biological 

effect corresponds to such persistence.128–130 Finally, a shared 

pathway of biological effect predicts that genetic predisposi-

tion to one particle-related injury may also influence another 

(eg, polymorphisms in glutathione transferase will function 

as a risk factor in injury after cigarette smoking and exposure 

Triggering of cell 

Oxidative stress

Particle exposure

signaling pathways 
(eg, MAP Kinases)

CancerEmphysema
and fibrosis

Vascular disease

ApoptosisInflammation

Mediator synthesis

Transcription factor 
activation

(eg, AP-1, NF-κB, 
and nrf-2) 

Figure 1 Mechanism of biological effect following particle exposure. Particles 
effect an oxidative stress, which prompts a series of reactions by the host, including 
activation of cell signaling pathways and transcription factors and inflammatory 
mediator release. This culminates in inflammation and apoptosis which, if prolonged 
or misregulated, can produce emphysema, fibrosis, vascular disease, and cancer.
Abbreviations: MAP, mitogen-activated protein; AP-1, activator protein-1; NF-kB, 
nuclear transcription factor-kappaB; Nrf2, NF-E2-related factor 2.
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to air pollution particles).131,132 Those genetic factors which 

are demonstrated to participate in lung injury after either 

cigarette smoking or other specific disease following particle 

exposure should be examined for a contribution in any of the 

particle-related diseases.133–136

Disclaimer
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